Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672916

RESUMO

This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.

2.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947195

RESUMO

The properties of the starch-amylolytic complex of commercial low-extract rye flour were determined based on the traditional method, such as falling number and amylograph test as well as differential scanning calorimetry (DSC). The starch, pentosans and protein had a significant effect on the thermal properties of the tested rye flours. Based on the falling number, it was revealed that rye flours were characterized by medium and low alpha-amylase activity. The falling number and amylograph test are not sufficient methods to determine the suitability of currently produced rye flours for bread making. The gelatinization process of the rye flour starch could be evaluated by the DSC test, which, together with the falling number and amylograph test, may allow a better way to evaluate the usefulness of rye flours for bread making. Many significant correlations between parameters determined by DSC endotherm and quality parameters of rye bread, such as volume and crumb hardness, were reported. Breads made from flour with higher enthalpy in DSC were characterized by higher volume and softer crumb.

3.
Foods ; 8(8)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398871

RESUMO

The aim of this study was to evaluate the baking value of rye flours from industrial mills and to indicate which rye flour quality parameters are the most important predictors of wholemeal rye bread quality for commercially milled rye grains. Ten wholemeal rye flours, which were characterized by ash content ranging from 1.43% to 2.42% d.m. (dry mass), were used for the study. The parameters that characterize the flour properties and the baking test were assessed. The study revealed that for the analyzed commercial rye flours, the falling number test and the amylograph properties are insufficient parameters for predicting the quality of wholemeal rye bread. The manufacture of good quality wholemeal bread requires the use of rye flour with superior quality, such as fine granulation, low protein content, low total and insoluble pentosans content, and, in particular, a high percentage of water-soluble pentosans content. Breads with a higher volume were obtained from rye flours that were generally characterized by lower protein content, lower total and insoluble pentosans content, and higher water-soluble pentosans content. Flour granulation and the percentage of water-soluble pentosans content especially, had a significant impact on bread's hardness of crumb and the hardness of crumb's increase during bread storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA