Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941268

RESUMO

The muscular remodeling that occurs during a transfemoral amputation surgery and subsequent long-term use of mechanically-passive prostheses have significant impacts on the mobility and gait pattern of the patient. At toe-off and during the subsequent swing phase, this behavior is characterized by increased hip flexion moment and power provided by the biological limb. In other patient populations (e.g., individuals with multiple sclerosis) passive tension-generating assistive elements have been shown to restore altered hip flexion mechanics at toe off. We hypothesized that an exosuit of the same basic architecture could be well applied to individuals with transfemoral amputation. In this paper, we simulate the effects of such a device for 18 patients of K2 and K3 Medicare functional classification levels. The device consists of two parallel elastic bands. Our approach considers the wrapping and geometric behavior of these elements over the residual limb in full-body patient-specific kinematic simulations of level ground walking. A nonlinear least squares problem was solved via the Levenberg-Marquardt method to find the band properties that best match (in order to offset) the intrinsic power delivery of the muscles during the swing phase. We found higher mobility patients (K3) often require a stiffer device, which leads to a greater error in the kinetic match between the biological limb and exosuit. In contrast, this method appears to be effective for K2 patients, which suggests that a different means of parameter selection or power delivery (e.g., active devices) may be necessary for higher mobility levels.


Assuntos
Amputados , Membros Artificiais , Idoso , Estados Unidos , Humanos , Limitação da Mobilidade , Medicare , Marcha/fisiologia , Caminhada/fisiologia , Amputação Cirúrgica , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA