Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33945500

RESUMO

Novel technologies are needed to facilitate large-scale detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies in human blood samples. Such technologies are essential to support seroprevalence studies and vaccine clinical trials, and to monitor quality and duration of immunity. We developed a microfluidic nanoimmunoassay (NIA) for the detection of anti-SARS-CoV-2 IgG antibodies in 1,024 samples per device. The method achieved a specificity of 100% and a sensitivity of 98% based on the analysis of 289 human serum samples. To eliminate the need for venipuncture, we developed low-cost, ultralow-volume whole blood sampling methods based on two commercial devices and repurposed a blood glucose test strip. The glucose test strip permits the collection, shipment, and analysis of 0.6 µL of whole blood easily obtainable from a simple finger prick. The NIA platform achieves high throughput, high sensitivity, and specificity based on the analysis of 289 human serum samples, and negligible reagent consumption. We furthermore demonstrate the possibility to combine NIA with decentralized and simple approaches to blood sample collection. We expect this technology to be applicable to current and future SARS-CoV-2 related serological studies and to protein biomarker analysis in general.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , COVID-19/sangue , Teste Sorológico para COVID-19/economia , Teste em Amostras de Sangue Seco , Ensaios de Triagem em Larga Escala/economia , Humanos , Imunoensaio/economia , Imunoglobulina G/sangue , Técnicas Analíticas Microfluídicas/economia , Reprodutibilidade dos Testes , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Manejo de Espécimes
2.
J Pediatric Infect Dis Soc ; 10(6): 706-713, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33180935

RESUMO

BACKGROUND: Recently, cases of multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) have been reported worldwide. Negative polymerase chain reaction (RT-PCR) testing associated with positive serology in most of the cases suggests a postinfectious syndrome. Because the pathophysiology of this syndrome is still poorly understood, extensive virological and immunological investigations are needed. METHODS: We report a series of 4 pediatric patients admitted to Geneva University Hospitals with persistent fever and laboratory evidence of inflammation meeting the published definition of MIS-C related to COVID-19, to whom an extensive virological and immunological workup was performed. RESULTS: RT-PCRs on multiple anatomical compartments were negative, whereas anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin A (IgA) and immunoglobulin G (IgG) were strongly positive by enzyme-linked immunosorbent assay and immunofluorescence. Both pseudoneutralization and full virus neutralization assays showed the presence of neutralizing antibodies in all children, confirming a recent infection with SARS-CoV-2. The analyses of cytokine profiles revealed an elevation in all cytokines, as reported in adults with severe COVID-19. Although differing in clinical presentation, some features of MIS-C show phenotypic overlap with hemophagocytic lymphohistiocytosis (HLH). In contrast to patients with primary HLH, our patients showed normal perforin expression and natural killer (NK) cell degranulation. The levels of soluble interleukin (IL)-2 receptor (sIL-2R) correlated with the severity of disease, reflecting recent T-cell activation. CONCLUSION: Our findings suggest that MIS-C related to COVID-19 is caused by a postinfectious inflammatory syndrome associated with an elevation in all cytokines, and markers of recent T-cell activation (sIL-2R) occurring despite a strong and specific humoral response to SARS-CoV-2. Further functional and genetic analyses are essential to better understand the mechanisms of host-pathogen interactions.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Criança , Humanos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica
3.
mSphere ; 5(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177214

RESUMO

Viral shedding patterns and their correlations with immune responses are still poorly characterized in mild coronavirus (CoV) disease 2019 (COVID-19). We monitored shedding of viral RNA and infectious virus and characterized the immune response kinetics of the first five patients quarantined in Geneva, Switzerland. High viral loads and infectious virus shedding were observed from the respiratory tract despite mild symptoms, with isolation of infectious virus and prolonged positivity by reverse transcriptase PCR (RT-PCR) until days 7 and 19 after symptom onset, respectively. Robust innate responses characterized by increases in activated CD14+ CD16+ monocytes and cytokine responses were observed as early as 2 days after symptom onset. Cellular and humoral severe acute respiratory syndrome (SARS)-CoV-2-specific adaptive responses were detectable in all patients. Infectious virus shedding was limited to the first week after symptom onset. A strong innate response, characterized by mobilization of activated monocytes during the first days of infection and SARS-CoV-2-specific antibodies, was detectable even in patients with mild disease.IMPORTANCE This work is particularly important because it simultaneously assessed the virology, immunology, and clinical presentation of the same subjects, whereas other studies assess these separately. We describe the detailed viral and immune profiles of the first five patients infected by SARS-CoV-2 and quarantined in Geneva, Switzerland. Viral loads peaked at the very beginning of the disease, and infectious virus was shed only during the early acute phase of disease. No infectious virus could be isolated by culture 7 days after onset of symptoms, while viral RNA was still detectable for a prolonged period. Importantly, we saw that all patients, even those with mild symptoms, mount an innate response sufficient for viral control (characterized by early activated cytokines and monocyte responses) and develop specific immunity as well as cellular and humoral SARS-CoV-2-specific adaptive responses, which already begin to decline a few months after the resolution of symptoms.


Assuntos
Imunidade Adaptativa , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Inata , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Carga Viral , Eliminação de Partículas Virais , Adulto , Idoso , Anticorpos Antivirais/metabolismo , Betacoronavirus/isolamento & purificação , Biomarcadores/metabolismo , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Citocinas/metabolismo , Humanos , Cinética , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA