Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 178: 108097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478680

RESUMO

Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S. Environmental Protection Agency's Office of Research and Development (EPA/ORD). First, to characterize the universe of chemicals in commerce and the environment, a carefully curated, web-accessible chemical resource has been created. This DSSTox database unambiguously identifies >1.2 million unique substances reflecting potential environmental and human exposures and includes computationally accessible links to each compound's corresponding data resources. Next, EPA is developing, applying, and evaluating predictive exposure models. These models increasingly rely on data, computational tools like quantitative structure activity relationship (QSAR) models, and machine learning/artificial intelligence to provide timely and efficient prediction of chemical exposure (and associated uncertainty) for thousands of chemicals at a time. Integral to this modeling effort, EPA is developing data resources across the exposure continuum that includes application of high-resolution mass spectrometry (HRMS) non-targeted analysis (NTA) methods providing measurement capability at scale with the number of chemicals in commerce. These research efforts are integrated and well-tailored to support population exposure assessment to prioritize chemicals for exposure as a critical input to risk management. In addition, the exposure forecasts will allow a wide variety of stakeholders to explore sustainable initiatives like green chemistry to achieve economic, social, and environmental prosperity and protection of future generations.


Assuntos
Poluentes Ambientais , Estados Unidos , Humanos , Poluentes Ambientais/análise , United States Environmental Protection Agency , Inteligência Artificial , Gestão de Riscos , Incerteza , Exposição Ambiental/análise , Medição de Risco
2.
Environ Sci Technol ; 56(17): 12228-12236, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35943277

RESUMO

Although commercial polychlorinated biphenyl (PCB) production was banned in 1979 under the Toxics Substance Control Act, inadvertent generation of PCBs through a variety of chemical production processes continues to contaminate products and waste streams. In this research, a total of 39 consumer products purchased from local and online retailer stores were analyzed for 209 PCB congeners. Inadvertent PCBs (iPCBs) were detected from seven products, and PCB-11 was the only congener detected in most of the samples, with a maximum concentration exceeding 800 ng/g. Emission of PCB-11 to air was studied from one craft foam sheet product using dynamic microchambers at 40 °C for about 120 days. PCB-11 migration from the product to house dust was also investigated. The IAQX program was then employed to estimate the emissions of PCB-11 from 10 craft foam sheets to indoor air in a 30 m3 room at 0.5 h-1 air change rate for 30 days. The predicted maximum PCB-11 concentration in the room air (156.8 ng/m3) and the measured concentration in dust (20 ng/g) were applied for the preliminary exposure assessment. The generated data from multipathway investigation in this work should be informative for further risk assessment and management for iPCBs.


Assuntos
Poluição do Ar em Ambientes Fechados , Bifenilos Policlorados , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental , Bifenilos Policlorados/análise , Medição de Risco
3.
Regul Toxicol Pharmacol ; 127: 105070, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718074

RESUMO

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.


Assuntos
Relação Dose-Resposta a Droga , Testes de Toxicidade/métodos , Toxicocinética , Animais , Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Dose Máxima Tolerável , Medição de Risco , Testes de Toxicidade/normas
4.
Sci Total Environ ; 712: 136263, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050401

RESUMO

In its 2014 report, A Framework Guide for the Selection of Chemical Alternatives, the National Academy of Sciences placed increased emphasis on comparative exposure assessment throughout the life cycle (i.e., from manufacturing to end-of-life) of a chemical. The inclusion of the full life cycle greatly increases the data demands for exposure assessments, including both the quantity and type of data. High throughput tools for exposure estimation add to this challenge by requiring rapid accessibility to data. In this work, ontology modeling was used to bridge the domains of exposure modeling and life cycle inventory modeling to facilitate data sharing and integration. The exposure ontology, ExO, is extended to describe human exposure to consumer products, while an inventory modeling ontology, LciO, is formulated to support automated data mining. The core ontology pieces are connected using a bridging ontology and discussed through a theoretical example to demonstrate how data from LCA can be leveraged to support rapid exposure modeling within a life cycle context.


Assuntos
Estágios do Ciclo de Vida , Medição de Risco
5.
Risk Anal ; 40(1): 83-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750840

RESUMO

The volume and variety of manufactured chemicals is increasing, although little is known about the risks associated with the frequency and extent of human exposure to most chemicals. The EPA and the recent signing of the Lautenberg Act have both signaled the need for high-throughput methods to characterize and screen chemicals based on exposure potential, such that more comprehensive toxicity research can be informed. Prior work of Mitchell et al. using multicriteria decision analysis tools to prioritize chemicals for further research is enhanced here, resulting in a high-level chemical prioritization tool for risk-based screening. Reliable exposure information is a key gap in currently available engineering analytics to support predictive environmental and health risk assessments. An elicitation with 32 experts informed relative prioritization of risks from chemical properties and human use factors, and the values for each chemical associated with each metric were approximated with data from EPA's CP_CAT database. Three different versions of the model were evaluated using distinct weight profiles, resulting in three different ranked chemical prioritizations with only a small degree of variation across weight profiles. Future work will aim to include greater input from human factors experts and better define qualitative metrics.

6.
Integr Environ Assess Manag ; 15(6): 880-894, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29917303

RESUMO

Most alternatives assessments (AAs) published to date are largely hazard-based rankings, thereby ignoring potential differences in human and/or ecosystem exposures; as such, they may not represent a fully informed consideration of the advantages and disadvantages of possible alternatives. Building on the 2014 US National Academy of Sciences recommendations to improve AA decisions by including comparative exposure assessment into AAs, the Health and Environmental Sciences Institute's (HESI) Sustainable Chemical Alternatives Technical Committee, which comprises scientists from academia, industry, government, and nonprofit organizations, developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher or different routes of human or environmental exposure potential, which together with consideration of the hazard assessment, could trigger a higher tiered, more quantitative exposure assessment on the alternatives being considered, minimizing the likelihood of regrettable substitution. This article outlines an approach for including chemical ingredient- and product-related exposure information in a qualitative comparison, including ingredient and product-related parameters. A classification approach was developed for ingredient and product parameters to support comparisons between alternatives as well as a methodology to address exposure parameter relevance and data quality. The ingredient parameters include a range of physicochemical properties that can impact routes and magnitude of exposure, whereas the product parameters include aspects such as product-specific exposure pathways, use information, accessibility, and disposal. Two case studies are used to demonstrate the application of the methodology. Key learnings and future research needs are summarized. Integr Environ Assess Manag 2018;00:000-000. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Tomada de Decisões , Ecotoxicologia/métodos , Medição de Risco/métodos
7.
Curr Opin Toxicol ; 9: 8-13, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29736486

RESUMO

Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of the Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.

8.
Environ Sci Technol ; 50(21): 11922-11934, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27668689

RESUMO

Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.


Assuntos
Tomada de Decisões , Medição de Risco , Meio Ambiente , Humanos , Modelos Teóricos , Saúde Pública , Testes de Toxicidade
9.
Environ Int ; 94: 424-435, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27282209

RESUMO

High-throughput screening (HTS) models are being developed and applied to prioritize chemicals for more comprehensive exposure and risk assessment. Dermal pathways are possible exposure routes to humans for thousands of chemicals found in personal care products and the indoor environment. HTS exposure models rely on skin permeability coefficient (KP; cm/h) models for exposure predictions. An initial database of approximately 1000 entries for empirically-based KP data was compiled from the literature and a subset of 480 data points for 245 organic chemicals derived from testing with human skin only and using only water as a vehicle was selected. The selected dataset includes chemicals with log octanol-water partition coefficients (KOW) ranging from -6.8 to 7.6 (median=1.8; 95% of the data range from -2.5 to 4.6) and molecular weight (MW) ranging from 18 to 765g/mol (median=180); only 3% >500g/mol. Approximately 53% of the chemicals in the database have functional groups which are ionizable in the pH range of 6 to 7.4, with 31% being appreciably ionized. The compiled log KP values ranged from -5.8 to 0.1cm/h (median=-2.6). The selected subset of the KP data was then used to evaluate eight representative KP models that can be readily applied for HTS assessments, i.e., parameterized with KOW and MW. The analysis indicates that a version of the SKINPERM model performs the best against the selected dataset. Comparisons of representative KP models against model input parameter property ranges (sensitivity analysis) and against chemical datasets requiring human health assessment were conducted to identify regions of chemical properties that should be tested to address uncertainty in KP models and HTS exposure assessments.


Assuntos
Bases de Dados de Compostos Químicos , Exposição Ambiental/análise , Compostos Orgânicos/metabolismo , Absorção Cutânea , Pele/metabolismo , Humanos , Medição de Risco
10.
Environ Health Perspect ; 124(6): 697-702, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545029

RESUMO

BACKGROUND: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving. OBJECTIVES: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products. DISCUSSION: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential. CONCLUSIONS: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. CITATION: Egeghy PP, Sheldon LS, Isaacs KK, Özkaynak H, Goldsmith M-R, Wambaugh JF, Judson RS, Buckley TJ. 2016. Computational exposure science: an emerging discipline to support 21st-century risk assessment. Environ Health Perspect 124:697-702; http://dx.doi.org/10.1289/ehp.1509748.


Assuntos
Simulação por Computador , Exposição Ambiental/estatística & dados numéricos , Biologia Computacional , Poluentes Ambientais , Poluição Ambiental/estatística & dados numéricos , Humanos , Medição de Risco/métodos , Estados Unidos , United States Environmental Protection Agency
11.
PLoS One ; 8(8): e70911, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940664

RESUMO

The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical's life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies.


Assuntos
Técnicas de Apoio para a Decisão , Exposição Ambiental , Poluentes Ambientais/classificação , Substâncias Perigosas/classificação , Absorção , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Meia-Vida , Substâncias Perigosas/farmacocinética , Substâncias Perigosas/toxicidade , Humanos , Medição de Risco
12.
Ann Occup Hyg ; 57(3): 280-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23482456

RESUMO

The British Occupational Hygiene Society, in collaboration with the Institute of Occupational Medicine, the University of Manchester, the UK Health and Safety Executive, and the University of Aberdeen hosted the 7th International Conference on the Science of Exposure Assessment (X2012) on 2 July-5 July 2012 in Edinburgh, UK. The conference ended with a special session at which invited speakers from government, industry, independent research institutes, and academia were asked to reflect on the conference and discuss what may now constitute the important highlights or drivers of future exposure assessment research. This article summarizes these discussions with respect to current and future technical and methodological developments. For the exposure science community to continue to have an impact in protecting public health, additional efforts need to be made to improve partnerships and cross-disciplinary collaborations, although it is equally important to ensure that the traditional occupational exposure themes are still covered as these issues are becoming increasingly important in the developing world. To facilitate this the 'X' conferences should continue to retain a holistic approach to occupational and non-occupational exposures and should actively pursue collaborations with other disciplines and professional organizations to increase the presence of consumer and environmental exposure scientists.


Assuntos
Planejamento em Desastres/métodos , Nanoestruturas/análise , Exposição Ocupacional/análise , Países em Desenvolvimento , Humanos , Invenções , Métodos , Saúde Ocupacional/legislação & jurisprudência , Medicina do Trabalho
13.
J Expo Sci Environ Epidemiol ; 21(2): 150-68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20145679

RESUMO

To better understand human exposure to perfluorinated compounds (PFCs), a model that assesses exposure to perfluorooctane sulfonate (PFOS) and its precursors from both an intake and a body burden perspective and combines the two with a simple pharmacokinetic (PK) model is demonstrated. Exposure pathways were modeled under "typical" and "contaminated" scenarios, for young children and adults. A range of intakes was also estimated from serum concentrations of PFOS reported in the National Health and Nutrition Examination Survey (NHANES) using a first-order 1-compartment PK model. Total PFOS intakes (medians summed over all pathways) were estimated as: 160 and 2200 ng/day for adults and 50 and 640 ng/day for children under typical and contaminated scenarios, respectively. Food ingestion appears to be the primary route of exposure in the general population. For children, the contribution from dust ingestion is nearly as great as from food ingestion. Pathway-specific contributions span several orders of magnitude and exhibit considerable overlap. PK modeling suggests central tendency PFOS intakes for adults range between 1.6 and 24.2 ng/kg-bw/day, and the forward-based intake estimates are within this range. The favorable comparison reported between the forward-modeled and the back-calculated range of intake predictions lends validity to the proposed framework.


Assuntos
Ácidos Alcanossulfônicos/sangue , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Inquéritos Nutricionais/métodos , Adulto , Ácidos Alcanossulfônicos/farmacocinética , Ácidos Alcanossulfônicos/toxicidade , Carga Corporal (Radioterapia) , Peso Corporal , Criança , Pré-Escolar , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Feminino , Fluorocarbonos/farmacocinética , Fluorocarbonos/toxicidade , Humanos , Masculino , Modelos Biológicos , Medição de Risco/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA