Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Drug Metab Dispos ; 49(1): 94-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139460

RESUMO

Translational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (Emax and EC50) and drug-drug interaction (DDI) risk assessment was determined. Despite variability in induction response across hepatocyte donors, the following recommendations are proposed: 1) 48 hours should be the primary time point for in vitro assessment of induction based on mRNA level or activity, with no further benefit from 72 hours; 2) when using mRNA, 24-hour incubations provide reliable assessment of induction and DDI risk; 3) if validated using prototypical inducers (>10-fold induction), 12-hour incubations may provide an estimate of induction potential, including characterization as negative if <2-fold induction of mRNA and no concentration dependence; 4) atypical dose-response ("bell-shaped") curves can be addressed by removing points outside an established confidence interval and %CV; 5) when maximum fold induction is well defined, the choice of nonlinear regression model has limited impact on estimated induction parameters; 6) when the maximum fold induction is not well defined, conservative DDI risk assessment can be obtained using sigmoidal three-parameter fit or constraining logistic three- or four-parameter fits to the maximum observed fold induction; 7) preliminary data suggest initial slope of the fold induction curve can be used to estimate Emax/EC50 and for induction risk assessment. SIGNIFICANCE STATEMENT: Regulatory agencies provide inconsistent guidance on the optimum length of time to evaluate cytochrome P450 induction in human hepatocytes, with EMA recommending 72 hours and FDA suggesting 48-72 hours. The Induction Working Group analyzed a large data set generated by seven member companies and determined that induction response and drug-drug risk assessment determined after 48-hour incubations were representative of 72-hour incubations. Additional recommendations are provided on model-fitting techniques for induction parameter estimation and addressing atypical concentration-response curves.


Assuntos
Desenvolvimento de Medicamentos , Interações Medicamentosas , Controle de Medicamentos e Entorpecentes , Medição de Risco/métodos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Controle de Medicamentos e Entorpecentes/métodos , Controle de Medicamentos e Entorpecentes/organização & administração , Indução Enzimática , Guias como Assunto , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Modelos Biológicos , Farmacocinética , Reprodutibilidade dos Testes
3.
Drug Metab Dispos ; 46(9): 1285-1303, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959133

RESUMO

The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.


Assuntos
Indutores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Controle de Medicamentos e Entorpecentes , Invenções/normas , Controle de Qualidade , RNA Mensageiro/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Flumazenil/metabolismo , Flumazenil/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia
4.
Drug Metab Dispos ; 44(8): 1399-423, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27052879

RESUMO

Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.


Assuntos
Descoberta de Drogas/normas , Indústria Farmacêutica/normas , Enzimas/metabolismo , Modelos Teóricos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Simulação por Computador , Árvores de Decisões , Descoberta de Drogas/métodos , Interações Medicamentosas , Humanos , Cinética , Preparações Farmacêuticas/química , Medição de Risco , Especificidade da Espécie , Especificidade por Substrato
5.
Curr Top Med Chem ; 11(4): 382-403, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21320066

RESUMO

Evaluation of the potential of a drug candidate to inhibit or inactivate cytochrome P450 (CYP) enzymes remains an important part of pharmaceutical drug Discovery and Development programs. CYP enzymes are considered to be one of the most important enzyme families involved in the metabolic clearance of the vast majority of prescribed drugs. Clinical drug-drug interactions (DDI) involving inhibition or time-dependent inactivation of these enzymes can result in dangerous side effects resulting from reduced clearance/increased exposure of the drug being affected (the 'victim' drug). In this regard, pharmaceutical companies have become quite vigilant in mitigating CYP inhibition/inactivation liabilities of drug candidates early in Discovery including continued risk assessment throughout Development. In this review, common strategies and decision making processes for the assessment of DDI risk in the different stages of pharmaceutical development are discussed. In addition, in vitro study designs, analysis, and interpretation of CYP inhibition and inactivation data are described in stage appropriate context. The in vitro tools and knowledge available now enable the Discovery Chemist to place the potential CYP DDI liability of a drug candidate into perspective and to aid in the optimization of chemical drug design to further mitigate this risk.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Descoberta de Drogas , Preparações Farmacêuticas , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Medição de Risco
6.
Drug Metab Dispos ; 37(7): 1339-54, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389860

RESUMO

Cytochrome P450 (P450) induction is one of the factors that can affect the pharmacokinetics of a drug molecule upon multiple dosing, and it can result in pharmacokinetic drug-drug interactions with coadministered drugs causing potential therapeutic failures. In recent years, various in vitro assays have been developed and used routinely to assess the potential for drug-drug interactions due to P450 induction. There is a desire from the pharmaceutical industry and regulatory agencies to harmonize assay methodologies, data interpretation, and the design of clinical drug-drug interaction studies. In this article, a team of 10 scientists from nine Pharmaceutical Research and Manufacturers of America (PhRMA) member companies conducted an anonymous survey among PhRMA companies to query current practices with regards to the conduct of in vitro induction assays, data interpretation, and clinical induction study practices. The results of the survey are presented in this article, along with reviews of current methodologies of in vitro assays and in vivo studies, including modeling efforts in this area. A consensus recommendation regarding common practices for the conduct of P450 induction studies is included.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Hepatócitos/metabolismo , Receptores de Esteroides/metabolismo , América , Biologia Computacional , Sistema Enzimático do Citocromo P-450/metabolismo , Coleta de Dados , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Interações Medicamentosas , Indução Enzimática/fisiologia , Previsões , Humanos , Receptor de Pregnano X , Receptores de Esteroides/genética , Projetos de Pesquisa , Ativação Transcricional
7.
Drug Metab Dispos ; 37(7): 1355-70, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19359406

RESUMO

Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years, significant advances have been made only in the past few years regarding how in vitro time-dependent inhibition data can be used to understand and predict clinical DDI. In this article, a team of scientists from 16 pharmaceutical research organizations that are member companies of the Pharmaceutical Research and Manufacturers of America offer a discussion of the phenomenon of TDI with emphasis on the laboratory methods used in its measurement. Results of an anonymous survey regarding pharmaceutical industry practices and strategies around TDI are reported. Specific topics that still possess a high degree of uncertainty are raised, such as parameter estimates needed to make predictions of DDI magnitude from in vitro inactivation parameters. A description of follow-up mechanistic experiments that can be done to characterize TDI are described. A consensus recommendation regarding common practices to address TDI is included, the salient points of which include the use of a tiered approach wherein abbreviated assays are first used to determine whether NMEs demonstrate TDI or not, followed by more thorough inactivation studies for those that do to define the parameters needed for prediction of DDI.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Indústria Farmacêutica , Interações Medicamentosas , Microssomos Hepáticos/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/metabolismo , Desenho de Fármacos , Glucuronosiltransferase , Humanos , Microssomos Hepáticos/enzimologia , Oxirredutases N-Desmetilantes/metabolismo , Preparações Farmacêuticas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
8.
Drug Metab Dispos ; 31(7): 815-32, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12814957

RESUMO

Current regulatory guidances do not address specific study designs for in vitro and in vivo drug-drug interaction studies. There is a common desire by regulatory authorities and by industry sponsors to harmonize approaches, to allow for a better assessment of the significance of findings across different studies and drugs. There is also a growing consensus for the standardization of cytochrome P450 (P450) probe substrates, inhibitors and inducers and for the development of classification systems to improve the communication of risk to health care providers and to patients. While existing guidances cover mainly P450-mediated drug interactions, the importance of other mechanisms, such as transporters, has been recognized more recently, and should also be addressed. This article was prepared by the Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism and Clinical Pharmacology Technical Working Groups and represents the current industry position. The intent is to define a minimal best practice for in vitro and in vivo pharmacokinetic drug-drug interaction studies targeted to development (not discovery support) and to define a data package that can be expected by regulatory agencies in compound registration dossiers.


Assuntos
Indústria Farmacêutica , Interações Medicamentosas , Projetos de Pesquisa , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA