Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967963

RESUMO

Human papillomavirus (HPV) is the causative agent of cervical and other epithelial cancers. Naturally occurring variants of HPV have been classified into lineages and sublineages based on their whole-genome sequences, but little is known about the impact of this diversity on the structure and function of viral gene products. The HPV capsid is an icosahedral lattice comprising 72 pentamers of the major capsid protein (L1) and the associated minor capsid protein (L2). We investigated the potential impact of this genome variation on the capsid antigenicity of lineage and sublineage variants of seven vaccine-relevant, oncogenic HPV genotypes by using a large panel of monoclonal antibodies (MAbs) raised against the L1 proteins of lineage A antigens. Each genotype had at least one variant that displayed a ≥4-fold reduced neutralizing antibody sensitivity against at least one MAb, demonstrating that naturally occurring variation can affect one or more functional antigenic determinants on the HPV capsid. For HPV16, HPV18, HPV31, and HPV45, the overall impact was of a low magnitude. For HPV33 (sublineages A2 and A3 and lineages B and C), HPV52 (lineage D), and HPV58 (lineage C), however, variant residues in the indicated lineages and sublineages reduced their sensitivity to neutralization by all MAbs by up to 1,000-fold, suggesting the presence of key antigenic determinants on the surface of these capsids. These determinants were resolved further by site-directed mutagenesis. These data improve our understanding of the impact of naturally occurring variation on the antigenicity of the HPV capsid of vaccine-relevant oncogenic HPV genotypes.IMPORTANCE Human papillomavirus (HPV) is the causative agent of cervical and some other epithelial cancers. HPV vaccines generate functional (neutralizing) antibodies that target the virus particles (or capsids) of the most common HPV cancer-causing genotypes. Each genotype comprises variant forms that have arisen over millennia and which include changes within the capsid proteins. In this study, we explored the potential for these naturally occurring variant capsids to impact recognition by neutralizing monoclonal antibodies. All genotypes included at least one variant form that exhibited reduced recognition by at least one antibody, with some genotypes affected more than others. These data highlight the impact of naturally occurring variation on the structure of the HPV capsid proteins of vaccine-relevant oncogenic HPV genotypes.


Assuntos
Alphapapillomavirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Genótipo , Vacinas contra Papillomavirus/imunologia , Alphapapillomavirus/genética , Anticorpos Monoclonais/genética , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Epitopos , Genes Virais/genética , Variação Genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 31/genética , Humanos , Testes de Neutralização , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Oncogenes , Papillomaviridae , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA