Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808755

RESUMO

Typical longitudinal radiographic assessment of brain tumors relies on side-by-side qualitative visualization of serial magnetic resonance images (MRIs) aided by quantitative measurements of tumor size. However, when assessing slowly-growing tumors and/or complex tumors, side-by-side visualization and quantification may be difficult or unreliable. Whole-brain, patient-specific "digital flipbooks" of longitudinal scans are a potential method to augment radiographic side-by-side reads in clinical settings by enhancing the visual perception of changes in tumor size, mass effect, and infiltration across multiple slices over time. In this approach, co-registered, consecutive MRI scans are displayed in a slide deck, where one slide displays multiple brain slices of a single timepoint in an array (e.g. 3x5 "mosaic" view of slices). The flipbooks are viewed similar to an animated flipbook of cartoons/photos so that subtle radiographic changes are visualized via perceived motion when scrolling through the slides. Importantly, flipbooks can be created easily with free, open-source software. This article describes the step-by-step methodology for creating flipbooks and discusses clinical scenarios for which flipbooks are particularly useful. Example flipbooks are provided in the Online Supplemental Material.

2.
Lancet Oncol ; 25(1): e29-e41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181810

RESUMO

Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.


Assuntos
Glioma , Neurologia , Humanos , Glioma/diagnóstico por imagem , Glioma/terapia , Aminoácidos , Medicina Interna , Tomografia por Emissão de Pósitrons , Fatores de Transcrição
3.
J Clin Oncol ; 41(33): 5187-5199, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774317

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria for high-grade gliomas (RANO-HGG) and low-grade gliomas (RANO-LGG) were developed to improve reliability of response assessment in glioma trials. Over time, some limitations of these criteria were identified, and challenges emerged regarding integrating features of the modified RANO (mRANO) or the immunotherapy RANO (iRANO) criteria. METHODS: Informed by data from studies evaluating the different criteria, updates to the RANO criteria are proposed (RANO 2.0). RESULTS: We recommend a standard set of criteria for both high- and low-grade gliomas, to be used for all trials regardless of the treatment modalities being evaluated. In the newly diagnosed setting, the postradiotherapy magnetic resonance imaging (MRI), rather than the postsurgical MRI, will be used as the baseline for comparison with subsequent scans. Since the incidence of pseudoprogression is high in the 12 weeks after radiotherapy, continuation of treatment and confirmation of progression during this period with a repeat MRI, or histopathologic evidence of unequivocal recurrent tumor, are required to define tumor progression. However, confirmation scans are not mandatory after this period nor for the evaluation of treatment for recurrent tumors. For treatments with a high likelihood of pseudoprogression, mandatory confirmation of progression with a repeat MRI is highly recommended. The primary measurement remains the maximum cross-sectional area of tumor (two-dimensional) but volumetric measurements are an option. For IDH wild-type glioblastoma, the nonenhancing disease will no longer be evaluated except when assessing response to antiangiogenic agents. In IDH-mutated tumors with a significant nonenhancing component, clinical trials may require evaluating both the enhancing and nonenhancing tumor components for response assessment. CONCLUSION: The revised RANO 2.0 criteria refine response assessment in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Reprodutibilidade dos Testes , Recidiva Local de Neoplasia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
4.
J Clin Oncol ; 41(17): 3160-3171, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37027809

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria are widely used in high-grade glioma clinical trials. We compared the RANO criteria with updated modifications (modified RANO [mRANO] and immunotherapy RANO [iRANO] criteria) in patients with newly diagnosed glioblastoma (nGBM) and recurrent GBM (rGBM) to evaluate the performance of each set of criteria and inform the development of the planned RANO 2.0 update. MATERIALS AND METHODS: Evaluation of tumor measurements and fluid-attenuated inversion recovery (FLAIR) sequences were performed by blinded readers to determine disease progression using RANO, mRANO, iRANO, and other response assessment criteria. Spearman's correlations between progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS: Five hundred twenty-six nGBM and 580 rGBM cases were included. Spearman's correlations were similar between RANO and mRANO (0.69 [95% CI, 0.62 to 0.75] v 0.67 [95% CI, 0.60 to 0.73]) in nGBM and rGBM (0.48 [95% CI, 0.40 to 0.55] v 0.50 [95% CI, 0.42 to 0.57]). In nGBM, requirement of a confirmation scan within 12 weeks of completion of radiotherapy to determine progression was associated with improved correlations. Use of the postradiation magnetic resonance imaging (MRI) as baseline scan was associated with improved correlation compared with use of the pre-radiation MRI (0.67 [95% CI, 0.60 to 0.73] v 0.53 [95% CI, 0.42 to 0.62]). Evaluation of FLAIR sequences did not improve the correlation. Among patients who received immunotherapy, Spearman's correlations were similar among RANO, mRANO, and iRANO. CONCLUSION: RANO and mRANO demonstrated similar correlations between PFS and OS. Confirmation scans were only beneficial in nGBM within 12 weeks of completion of radiotherapy, and there was a trend in favor of the use of postradiation MRI as the baseline scan in nGBM. Evaluation of FLAIR can be omitted. The iRANO criteria did not add significant benefit in patients who received immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Imunoterapia
5.
Neurooncol Adv ; 5(1): vdac184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685009

RESUMO

Background: Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. Methods: A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. Results: IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. Conclusion: NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others.

6.
Neurotherapeutics ; 19(6): 1855-1868, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35451676

RESUMO

There is an urgent need for drug development in brain tumors. While current radiographic response assessment provides instructions for identifying large treatment effects in simple high- and low-grade gliomas, there remains a void of strategies to evaluate complex or difficult to measure tumors or tumors of mixed grade with enhancing and non-enhancing components. Furthermore, most patients exhibit some period of alteration in tumor growth after starting a new therapy, but simple response categorization (e.g., stable disease, progressive disease) fails to provide any meaningful insight into the depth or degree of potential "subclinical" therapeutic response. We propose a creative solution to these issues based on a tiered strategy meant to increase confidence in identifying therapeutic effects even in the most challenging tumor types, while also providing a framework for complex evaluation of combination and sequential treatment schemes. Specifically, we demonstrate the utility of digital "flipbooks" to quickly identify subtle changes in complex tumors. We show how a modified Levin criteria can be used to quantify the degree of visual changes, while establishing estimates of the association between tumor volume and visual inspection. Lastly, we introduce the concept of quantifying therapeutic response using control systems theory. We propose measuring changes in volume (proportional), the area under the volume vs. time curve (integral) and changes in growth rates (derivative) to utilize a "PID" controller model of single or combination therapeutic activity.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Teoria de Sistemas , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Combinação de Medicamentos
7.
Cancer J ; 27(5): 395-403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34570454

RESUMO

ABSTRACT: Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Desenvolvimento de Medicamentos , Glioma/tratamento farmacológico , Humanos , Imunoterapia
9.
J Neurooncol ; 134(3): 495-504, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28382534

RESUMO

The wide variety of treatment options that exist for glioblastoma, including surgery, ionizing radiation, anti-neoplastic chemotherapies, anti-angiogenic therapies, and active or passive immunotherapies, all may alter aspects of vascular permeability within the tumor and/or normal parenchyma. These alterations manifest as changes in the degree of contrast enhancement or T2-weighted signal hyperintensity on standard anatomic MRI scans, posing a potential challenge for accurate radiographic response assessment for identifying anti-tumor effects. The current review highlights the challenges that remain in differentiating true disease progression from changes due to radiation therapy, including pseudoprogression and radionecrosis, as well as immune or inflammatory changes that may occur as either an undesired result of cytotoxic therapy or as a desired consequence of immunotherapies.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Progressão da Doença , Glioblastoma/fisiopatologia , Humanos , Inflamação/diagnóstico por imagem , Inflamação/etiologia , Necrose/diagnóstico por imagem , Necrose/etiologia , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia
10.
Neurotherapeutics ; 14(2): 307-320, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108885

RESUMO

Radiographic endpoints including response and progression are important for the evaluation of new glioblastoma therapies. The current RANO criteria was developed to overcome many of the challenges identified with previous guidelines for response assessment, however, significant challenges and limitations remain. The current recommendations build on the strengths of the current RANO criteria, while addressing many of these limitations. Modifications to the current RANO criteria include suggestions for volumetric response evaluation, use contrast enhanced T1 subtraction maps to increase lesion conspicuity, removal of qualitative non-enhancing tumor assessment requirements, use of the post-radiation time point as the baseline for newly diagnosed glioblastoma response assessment, and "treatment-agnostic" response assessment rubrics for identifying pseudoprogression, pseudoresponse, and a confirmed durable response in newly diagnosed and recurrent glioblastoma trials.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/terapia , Imageamento por Ressonância Magnética , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Resultado do Tratamento
11.
Clin Cancer Res ; 22(20): 5079-5086, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27185374

RESUMO

PURPOSE: Structural and functional alterations in tumor vasculature are thought to contribute to tumor hypoxia which is a primary driver of malignancy through its negative impact on the efficacy of radiation, immune surveillance, apoptosis, genomic stability, and accelerated angiogenesis. We performed a prospective, multicenter study to test the hypothesis that abnormal tumor vasculature and hypoxia, as measured with MRI and PET, will negatively impact survival in patients with newly diagnosed glioblastoma. EXPERIMENTAL DESIGN: Prior to the start of chemoradiation, patients with glioblastoma underwent MRI scans that included dynamic contrast enhanced and dynamic susceptibility contrast perfusion sequences to quantitate tumor cerebral blood volume/flow (CBV/CBF) and vascular permeability (ktrans) as well as 18F-Fluoromisonidazole (18F-FMISO) PET to quantitate tumor hypoxia. ROC analysis and Cox regression models were used to determine the association of imaging variables with progression-free and overall survival. RESULTS: Fifty patients were enrolled of which 42 had evaluable imaging data. Higher pretreatment 18F-FMISO SUVpeak (P = 0.048), mean ktrans (P = 0.024), and median ktrans (P = 0.045) were significantly associated with shorter overall survival. Higher pretreatment median ktrans (P = 0.021), normalized RCBV (P = 0.0096), and nCBF (P = 0.038) were significantly associated with shorter progression-free survival. SUVpeak [AUC = 0.75; 95% confidence interval (CI), 0.59-0.91], nRCBV (AUC = 0.72; 95% CI, 0.56-0.89), and nCBF (AUC = 0.72; 95% CI, 0.56-0.89) were predictive of survival at 1 year. CONCLUSIONS: Increased tumor perfusion, vascular volume, vascular permeability, and hypoxia are negative prognostic markers in newly diagnosed patients with gioblastoma, and these important physiologic markers can be measured safely and reliably using MRI and 18F-FMISO PET. Clin Cancer Res; 22(20); 5079-86. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/mortalidade , Glioblastoma/irrigação sanguínea , Glioblastoma/mortalidade , Imageamento por Ressonância Magnética , Neovascularização Patológica/patologia , Tomografia por Emissão de Pósitrons , Hipóxia Tumoral/fisiologia , Adulto , Idoso , Biomarcadores/análise , Neoplasias Encefálicas/patologia , Intervalo Livre de Doença , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Misonidazol/análogos & derivados , Misonidazol/farmacologia , Estudos Prospectivos , Compostos Radiofarmacêuticos/farmacologia
12.
Clin Cancer Res ; 22(3): 575-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490307

RESUMO

PURPOSE: The RANO criteria have not been assessed using outcome data from prospective trials. We examined the radiologic data of patients with recurrent glioblastoma from the randomized phase II trial (AVF3708g) to determine the effect of including T2/FLAIR evaluation as per RANO criteria on measurements of objective response rates (ORRs) and progression-free survival (PFS) compared with assessment based on contrast enhancement (Macdonald criteria). EXPERIMENTAL DESIGN: The ORRs and median PFS were determined using the RANO criteria and compared with those obtained using the Macdonald criteria. Landmark analyses were performed at 2, 4, and 6 months, and Cox proportional hazard models were used to determine the associations between OR and progression with subsequent survival. RESULTS: The ORRs were 0.331 [95% confidence interval (CI), 0.260-0.409] and 0.393 (95% CI, 0.317-0.472) by RANO and Macdonald criteria, respectively (P < 0.0001). The median PFS was 4.6 months (95% CI, 4.1-5.5) using RANO criteria, compared with 6.4 months (95% CI, 5.5-7.1) as determined by Macdonald criteria (P = 0.01). At 2-, 4-, and 6-month landmarks, both OR status and PFS determined by either RANO or Macdonald criteria were predictive of overall survival [OS; hazard ratios for 4-month landmark (OR HR = 1.93, P = 0.0012; PFS HR, 4.23, P < 0.0001)]. CONCLUSIONS: The inclusion of T2/FLAIR assessment resulted in statistically significant differences in median PFS and ORRs compared with assessment of solely enhancing tumor (Macdonald criteria), although OR and PFS determined by both RANO and Macdonald criteria correlated with OS.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Bevacizumab/administração & dosagem , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/mortalidade , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Variações Dependentes do Observador , Ensaios Clínicos Controlados Aleatórios como Assunto , Retratamento , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
13.
Lancet Oncol ; 16(15): e534-e542, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26545842

RESUMO

Immunotherapy is a promising area of therapy in patients with neuro-oncological malignancies. However, early-phase studies show unique challenges associated with the assessment of radiological changes in response to immunotherapy reflecting delayed responses or therapy-induced inflammation. Clinical benefit, including long-term survival and tumour regression, can still occur after initial disease progression or after the appearance of new lesions. Refinement of the response assessment criteria for patients with neuro-oncological malignancies undergoing immunotherapy is therefore warranted. Herein, a multinational and multidisciplinary panel of neuro-oncology immunotherapy experts describe immunotherapy Response Assessment for Neuro-Oncology (iRANO) criteria based on guidance for the determination of tumour progression outlined by the immune-related response criteria and the RANO working group. Among patients who demonstrate imaging findings meeting RANO criteria for progressive disease within 6 months of initiating immunotherapy, including the development of new lesions, confirmation of radiographic progression on follow-up imaging is recommended provided that the patient is not significantly worse clinically. The proposed criteria also include guidelines for the use of corticosteroids. We review the role of advanced imaging techniques and the role of measurement of clinical benefit endpoints including neurological and immunological functions. The iRANO guidelines put forth in this Review will evolve successively to improve their usefulness as further experience from immunotherapy trials in neuro-oncology accumulate.


Assuntos
Imunoterapia , Neoplasias do Sistema Nervoso/terapia , Algoritmos , Progressão da Doença , Humanos , Neoplasias do Sistema Nervoso/diagnóstico , Guias de Prática Clínica como Assunto
14.
Top Magn Reson Imaging ; 24(3): 127-36, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26049816

RESUMO

There exist multiple challenges associated with the current response assessment criteria for high-grade gliomas, including the uncertain role of changes in nonenhancing T2 hyperintensity, and the phenomena of pseudoresponse and pseudoprogression in the setting of antiangiogenic and chemoradiation therapies, respectively. Advanced physiological magnetic resonance imaging (MRI), including diffusion and perfusion (dynamic susceptibility contrast MRI and dynamic contrast-enhanced MRI) sensitive techniques for overcoming response assessment challenges, has been proposed, with their own potential advantages and inherent shortcomings. Measurement variability exists for conventional and advanced MRI techniques, necessitating the standardization of image acquisition parameters in order to establish the utility of these imaging methods in multicenter trials for high-grade gliomas. This review chapter highlights the important features of MRI in clinical brain tumor trials, focusing on the current state of response assessment in brain tumors, advanced imaging techniques that may provide additional value for determining response, and imaging issues to be considered for multicenter trials.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Ensaios Clínicos como Assunto , Glioma/patologia , Imageamento por Ressonância Magnética , Meios de Contraste , Humanos , Aumento da Imagem
15.
Neuro Oncol ; 16 Suppl 7: vii24-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313236

RESUMO

We provide historical and scientific guidance on imaging response assessment for incorporation into clinical trials to stimulate effective and expedited drug development for recurrent glioblastoma by addressing 3 fundamental questions: (i) What is the current validation status of imaging response assessment, and when are we confident assessing response using today's technology? (ii) What imaging technology and/or response assessment paradigms can be validated and implemented soon, and how will these technologies provide benefit? (iii) Which imaging technologies need extensive testing, and how can they be prospectively validated? Assessment of T1 +/- contrast, T2/FLAIR, diffusion, and perfusion-imaging sequences are routine and provide important insight into underlying tumor activity. Nonetheless, utility of these data within and across patients, as well as across institutions, are limited by challenges in quantifying measurements accurately and lack of consistent and standardized image acquisition parameters. Currently, there exists a critical need to generate guidelines optimizing and standardizing MRI sequences for neuro-oncology patients. Additionally, more accurate differentiation of confounding factors (pseudoprogression or pseudoresponse) may be valuable. Although promising, diffusion MRI, perfusion MRI, MR spectroscopy, and amino acid PET require extensive standardization and validation. Finally, additional techniques to enhance response assessment, such as digital T1 subtraction maps, warrant further investigation.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Critérios de Avaliação de Resposta em Tumores Sólidos , Neoplasias Encefálicas/diagnóstico , Ensaios Clínicos como Assunto , Glioblastoma/diagnóstico , Humanos , Imageamento por Ressonância Magnética/tendências , Espectroscopia de Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/tendências
16.
Curr Neurol Neurosci Rep ; 11(3): 336-44, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21234719

RESUMO

Bevacizumab is thought to normalize tumor vasculature and restore the blood-brain barrier, decreasing enhancement and peritumoral edema. Conventional measurements of tumor response rely upon dimensions of enhancing tumor. After bevacizumab treatment, glioblastomas are more prone to progress as nonenhancing tumor. The RANO (Response Assessment in Neuro-Oncology) criteria for glioma response use fluid-attenuated inversion recovery (FLAIR)/T2 hyperintensity as a surrogate for nonenhancing tumor; however, nonenhancing tumor can be difficult to differentiate from other causes of FLAIR/T2 hyperintensity (e.g., radiation-induced gliosis). Due to these difficulties, recent efforts have been directed toward identifying new biomarkers that either predict treatment response or accurately measure response of both enhancing and nonenhancing tumor shortly after treatment initiation. This will allow for earlier treatment decisions, saving patients from the adverse effects of ineffective therapies while allowing them to try alternative therapies sooner. An active area of research is the use of physiologic imaging, which can potentially detect treatment effects before changes in tumor size are evident.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Glioma/patologia , Glioma/terapia , Imageamento por Ressonância Magnética/métodos , Fator A de Crescimento do Endotélio Vascular/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Bevacizumab , Biomarcadores Tumorais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA