Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proteins ; Suppl 5: 171-83, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11835495

RESUMO

The results of the second Critical Assessment of Fully Automated Structure Prediction (CAFASP2) are presented. The goals of CAFASP are to (i) assess the performance of fully automatic web servers for structure prediction, by using the same blind prediction targets as those used at CASP4, (ii) inform the community of users about the capabilities of the servers, (iii) allow human groups participating in CASP to use and analyze the results of the servers while preparing their nonautomated predictions for CASP, and (iv) compare the performance of the automated servers to that of the human-expert groups of CASP. More than 30 servers from around the world participated in CAFASP2, covering all categories of structure prediction. The category with the largest participation was fold recognition, where 24 CAFASP servers filed predictions along with 103 other CASP human groups. The CAFASP evaluation indicated that it is difficult to establish an exact ranking of the servers because the number of prediction targets was relatively small and the differences among many servers were also small. However, roughly a group of five "best" fold recognition servers could be identified. The CASP evaluation identified the same group of top servers albeit with a slightly different relative order. Both evaluations ranked a semiautomated method named CAFASP-CONSENSUS, that filed predictions using the CAFASP results of the servers, above any of the individual servers. Although the predictions of the CAFASP servers were available to human CASP predictors before the CASP submission deadline, the CASP assessment identified only 11 human groups that performed better than the best server. Furthermore, about one fourth of the top 30 performing groups corresponded to automated servers. At least half of the top 11 groups corresponded to human groups that also had a server in CAFASP or to human groups that used the CAFASP results to prepare their predictions. In particular, the CAFASP-CONSENSUS group was ranked 7. This shows that the automated predictions of the servers can be very helpful to human predictors. We conclude that as servers continue to improve, they will become increasingly important in any prediction process, especially when dealing with genome-scale prediction tasks. We expect that in the near future, the performance difference between humans and machines will continue to narrow and that fully automated structure prediction will become an effective companion and complement to experimental structural genomics.


Assuntos
Conformação Proteica , Software , Automação , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência
2.
Bioinformatics ; 16(9): 776-85, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11108700

RESUMO

MOTIVATION: Evaluating the accuracy of predicted models is critical for assessing structure prediction methods. Because this problem is not trivial, a large number of different assessment measures have been proposed by various authors, and it has already become an active subfield of research (Moult et al. (1997,1999) and CAFASP (Fischer et al. 1999) prediction experiments have demonstrated that it has been difficult to choose one single, 'best' method to be used in the evaluation. Consequently, the CASP3 evaluation was carried out using an extensive set of especially developed numerical measures, coupled with human-expert intervention. As part of our efforts towards a higher level of automation in the structure prediction field, here we investigate the suitability of a fully automated, simple, objective, quantitative and reproducible method that can be used in the automatic assessment of models in the upcoming CAFASP2 experiment. Such a method should (a) produce one single number that measures the quality of a predicted model and (b) perform similarly to human-expert evaluations. RESULTS: MaxSub is a new and independently developed method that further builds and extends some of the evaluation methods introduced at CASP3. MaxSub aims at identifying the largest subset of C(alpha) atoms of a model that superimpose 'well' over the experimental structure, and produces a single normalized score that represents the quality of the model. Because there exists no evaluation method for assessment measures of predicted models, it is not easy to evaluate how good our new measure is. Even though an exact comparison of MaxSub and the CASP3 assessment is not straightforward, here we use a test-bed extracted from the CASP3 fold-recognition models. A rough qualitative comparison of the performance of MaxSub vis-a-vis the human-expert assessment carried out at CASP3 shows that there is a good agreement for the more accurate models and for the better predicting groups. As expected, some differences were observed among the medium to poor models and groups. Overall, the top six predicting groups ranked using the fully automated MaxSub are also the top six groups ranked at CASP3. We conclude that MaxSub is a suitable method for the automatic evaluation of models.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Dobramento de Proteína , Validação de Programas de Computador , Sequência de Aminoácidos , Proteínas de Bactérias/química , Modelos Moleculares , Análise Numérica Assistida por Computador , Fatores de Iniciação de Peptídeos/química , Valor Preditivo dos Testes , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes
3.
Proteins ; Suppl 3: 209-17, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10526371

RESUMO

The results of the first Critical Assessment of Fully Automated Structure Prediction (CAFASP-1) are presented. The objective was to evaluate the success rates of fully automatic web servers for fold recognition which are available to the community. This study was based on the targets used in the third meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP-3). However, unlike CASP-3, the study was not a blind trial, as it was held after the structures of the targets were known. The aim was to assess the performance of methods without the user intervention that several groups used in their CASP-3 submissions. Although it is clear that "human plus machine" predictions are superior to automated ones, this CAFASP-1 experiment is extremely valuable for users of our methods; it provides an indication of the performance of the methods alone, and not of the "human plus machine" performance assessed in CASP. This information may aid users in choosing which programs they wish to use and in evaluating the reliability of the programs when applied to their specific prediction targets. In addition, evaluation of fully automated methods is particularly important to assess their applicability at genomic scales. For each target, groups submitted the top-ranking folds generated from their servers. In CAFASP-1 we concentrated on fold-recognition web servers only and evaluated only recognition of the correct fold, and not, as in CASP-3, alignment accuracy. Although some performance differences appeared within each of the four target categories used here, overall, no single server has proved markedly superior to the others. The results showed that current fully automated fold recognition servers can often identify remote similarities when pairwise sequence search methods fail. Nevertheless, in only a few cases outside the family-level targets has the score of the top-ranking fold been significant enough to allow for a confident fully automated prediction. Because the goals, rules, and procedures of CAFASP-1 were different from those used at CASP-3, the results reported here are not comparable with those reported in CASP-3. Nevertheless, it is clear that current automated fold recognition methods can not yet compete with "human-expert plus machine" predictions. Finally, CAFASP-1 has been useful in identifying the requirements for a future blind trial of automated served-based protein structure prediction.


Assuntos
Proteínas/química , Algoritmos , Internet , Dobramento de Proteína , Estrutura Secundária de Proteína
4.
Proteins ; 36(1): 68-76, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10373007

RESUMO

There are many proteins that share the same fold but have no clear sequence similarity. To predict the structure of these proteins, so called "protein fold recognition methods" have been developed. During the last few years, improvements of protein fold recognition methods have been achieved through the use of predicted secondary structures (Rice and Eisenberg, J Mol Biol 1997;267:1026-1038), as well as by using multiple sequence alignments in the form of hidden Markov models (HMM) (Karplus et al., Proteins Suppl 1997;1:134-139). To test the performance of different fold recognition methods, we have developed a rigorous benchmark where representatives for all proteins of known structure are matched against each other. Using this benchmark, we have compared the performance of automatically-created hidden Markov models with standard-sequence-search methods. Further, we combine the use of predicted secondary structures and multiple sequence alignments into a combined method that performs better than methods that do not use this combination of information. Using only single sequences, the correct fold of a protein was detected for 10% of the test cases in our benchmark. Including multiple sequence information increased this number to 16%, and when predicted secondary structure information was included as well, the fold was correctly identified in 20% of the cases. Moreover, if the correct secondary structure was used, 27% of the proteins could be correctly matched to a fold. For comparison, blast2, fasta, and ssearch identifies the fold correctly in 13-17% of the cases. Thus, standard pairwise sequence search methods perform almost as well as hidden Markov models in our benchmark. This is probably because the automatically-created multiple sequence alignments used in this study do not contain enough diversity and because the current generation of hidden Markov models do not perform very well when built from a few sequences.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Cadeias de Markov , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Proteins ; 23(1): 73-82, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8539252

RESUMO

We have enhanced genetic algorithms and Monte Carlo methods for simulation of protein folding by introducing "local moves" in dihedral space. A local move consists of changes in backbone dihedral angles in a sequential window while the positions of all atoms outside the window remain unchanged. We find three advantages of local moves: (1) For some energy functions, protein conformations of lower energy are found; (2) these low energy conformations are found in fewer steps; and (3) the simulations are less sensitive to the details of the annealing protocol. To distinguish the effectiveness of local move algorithm from the complexity of the energy function, we have used several different energy functions. These energy functions include the Profile score (Bowie et al., Science 253:164-170, 1991), the knowledge-based energy function used by Bowie and Eisenberg 1994 (Proc. Natl. Acad. Sci. U.S.A. 91:4434-4440, 1994), two energy terms developed as suggested by Sippl and coworkers (Hendlich et al., J. Mol. Biol. 216:167-180, 1990), and AMBER (Weiner and Kollman, J. Comp. Chem. 2:287-303, 1981). Besides these energy functions we have used three energy functions that include knowledge of the native structures: the RMSD from the native structure, the distance matrix error, and an energy term based on the distance between different residue types called DBIN. In some of these simulations the main advantage of local moves is the reduced dependence on the details of the annealing schedule. In other simulations, local moves are superior to other algorithms as structures with lower energy are found.


Assuntos
Algoritmos , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Simulação por Computador , Modelos Genéticos , Método de Monte Carlo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA