Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3293, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841834

RESUMO

Percutaneous Cement Discoplasty (PCD) is a minimally invasive surgical technique to treat degenerated intervertebral discs. When the disc is severely degenerated, the vacuum observed in place of the nucleus pulposus can be filled with bone cement to restore the disc height, open the foramen space, and relieve pain. This study aimed to evaluate the foramen geometry change due to PCD, in the loaded spine. Cadaveric spines (n = 25) were tested in flexion and extension while Digital Image Correlation (DIC) measured displacements and deformations. Tests were performed on simulated pre-operative condition (nucleotomy) and after PCD. Registering DIC images and the 3D specimen geometry from CT scans, a 3D model of the specimens aligned in the experimental pose was obtained for nucleotomy and PCD. Foramen space volume was geometrically measured for both conditions. The volume of cement injected was measured to explore correlation with the change of foramen space. PCD induced a significant overall foraminal decompression in both flexion (foramen space increased by 835 ± 1289 mm3, p = 0.001) and extension (1205 ± 1106 mm3, p < 0.001), confirming that the expected improvements of PCD show also during spine motion. Furthermore, in extension when the foramen is the most challenged, the impact of PCD on the foramen correlated with the injected cement volume.


Assuntos
Cimentos Ósseos , Disco Intervertebral , Humanos , Tomografia Computadorizada por Raios X , Dor , Movimento (Física) , Descompressão , Vértebras Lombares
2.
J Clin Neurosci ; 72: 438-446, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31911105

RESUMO

OBJECTIVE: The aim of the study is to develop a workflow to establish geometrical quality criteria for 3D printed anatomical models as a guidance for selecting the most suitable 3D printing technologies available in a clinical environment. METHODS: We defined the 3D geometry of a 25-year-old male patient's L4 vertebra and the geometry was then printed using two technologies, which differ in printing resolution and affordability: Fused Deposition Modelling (FDM) and Digital Light Processing (DLP). In order to measure geometrical accuracy, the 3D scans of two physical models were compared to the virtual input model. To compare surface qualities of these printing technologies we determined surface roughness for two regions of interest. Finally, we present our experience in the clinical application of a physical model in a congenital deformity case. RESULTS: The analysis of the distribution of the modified Hausdorff distance values along the vertebral surface meshes (99% of values <1 mm) of the 3D printed models provides evidence for high printing accuracy in both printing techniques. Our results demonstrate that the surface qualities, measured by roughness are adequate (~99% of values <0.1 mm) for both physical models. Finally, we implemented the FDM physical model for surgical planning. CONCLUSION: We present a workflow capable of determining the quality of 3D printed models and the application of a high quality and affordable 3D printed spine physical model in the pre operative planning. As a result of the visual guidance provided by the physical model, we were able to define the optimal trajectory of the screw insertion during surgery.


Assuntos
Custos e Análise de Custo , Vértebras Lombares/anatomia & histologia , Modelos Anatômicos , Impressão Tridimensional/instrumentação , Adulto , Humanos , Masculino , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA