Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(16): 9072-9082, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979954

RESUMO

The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.


Assuntos
Reparo do DNA , DNA , Pareamento de Bases , DNA/química , Dano ao DNA , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Termodinâmica
2.
J Phys Chem A ; 113(40): 10803-10, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19746947

RESUMO

Norfloxacin, 1-ethyl-6-fluoro-1,4-dihydo-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, NOR, is an antibiotic drug from the fluoroquinoline family. The different protonation states of this drug formed throughout the pH range is studied by means of density functional theory (DFT) and the spectra of the NOR species computed using time-dependent DFT. Details about their photochemistry are obtained from investigating the highest occupied and lowest unoccupied molecular orbitals. The predominant species under physiological pH, the zwitterion, is the most photoliable one, capable of producing singlet oxygen or/and superoxide radical anions from its triplet state. In addition, the main photodegradation step, defluorination, occurs more easily from this species compared with the other forms. The defluorination from the excited triplet state requires passing a barrier of 16.3 kcal/mol in the case of the zwitterion. The neutral and cationic forms display higher transition barriers, whereas the reaction path of defluorination is completely endothermic for the anionic species. The theoretical results obtained herein are in line with previous experimental data.


Assuntos
Antibacterianos/química , Antibacterianos/efeitos da radiação , Modelos Químicos , Norfloxacino/química , Norfloxacino/efeitos da radiação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Fotoquímica , Prótons , Termodinâmica
3.
J Phys Chem B ; 111(15): 3977-81, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17388561

RESUMO

The imidazoline derivative naphazoline (2-(1-naphtylmethyl)-2-imidazoline) is an alpha2-adrenergic agonist used as non-prescription eye and nasal preparations. Besides its functionality in generating vascoconstriction and decongestion in the patient, the toxicity, ROS generating capability, and recently also possible antioxidant capacity of the compound have been reported in the literature. In the current work the structural and electronic features of the drug are explored, using computational chemical tools. Electron affinities, ionization potentials, and excitation energies are reported, as well as charge and spin distributions of various forms of the drug. The difference in photochemical behavior between the protonated and unprotonated (basic) species is explained by the molecular orbital distributions, allowing for efficient excitation quenching in the basic structure but clear naphthalene to imidazolene charge transfer upon HOMO--> LUMO excitation in the protonated form, enabling larger intersystem crossing capability to the imidazole localized excited triplet and a resulting higher singlet oxygen quantum yield.


Assuntos
Modelos Químicos , Nafazolina/química , Eletroquímica , Estrutura Molecular , Oxirredução , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA