Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Nutr ; 40(8): 5038-5046, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34365038

RESUMO

BACKGROUND & AIMS: Body composition analysis on CT images is a valuable tool for sarcopenia assessment. We aimed to develop and validate a deep neural network applicable to whole-body CT images of PET-CT scan for the automatic volumetric segmentation of body composition. METHODS: For model development, one hundred whole-body or torso 18F-fluorodeoxyglucose PET-CT scans of 100 patients were retrospectively included. Two radiologists semi-automatically labeled the following seven body components in every CT image slice, providing a total of 46,967 image slices from the 100 scans for training the 3D U-Net (training, 39,268 slices; tuning, 3116 slices; internal validation, 4583 slices): skin, bone, muscle, abdominal visceral fat, subcutaneous fat, internal organs with vessels, and central nervous system. The segmentation accuracy was assessed using reference masks from three external datasets: two Korean centers (4668 and 4796 image slices from 20 CT scans, each) and a French public dataset (3763 image slices from 24 CT scans). The 3D U-Net-driven values were clinically validated using bioelectrical impedance analysis (BIA) and by assessing the model's diagnostic performance for sarcopenia in a community-based elderly cohort (n = 522). RESULTS: The 3D U-Net achieved accurate body composition segmentation with an average dice similarity coefficient of 96.5%-98.9% for all masks and 92.3%-99.3% for muscle, abdominal visceral fat, and subcutaneous fat in the validation datasets. The 3D U-Net-derived torso volume of skeletal muscle and fat tissue and the average area of those tissues in the waist were correlated with BIA-derived appendicular lean mass (correlation coefficients: 0.71 and 0.72, each) and fat mass (correlation coefficients: 0.95 and 0.93, each). The 3D U-Net-derived average areas of skeletal muscle and fat tissue in the waist were independently associated with sarcopenia (P < .001, each) with adjustment for age and sex, providing an area under the curve of 0.858 (95% CI, 0.815 to 0.901). CONCLUSIONS: This deep neural network model enabled the automatic volumetric segmentation of body composition on whole-body CT images, potentially expanding adjunctive sarcopenia assessment on PET-CT scan and volumetric assessment of metabolism in whole-body muscle and fat tissues.


Assuntos
Composição Corporal , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Sarcopenia/diagnóstico , Imagem Corporal Total/métodos , Abdome/diagnóstico por imagem , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Gordura Intra-Abdominal/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Avaliação Nutricional , Compostos Radiofarmacêuticos , República da Coreia , Estudos Retrospectivos , Gordura Subcutânea/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA