Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856781

RESUMO

OBJECTIVES: Our study comprised a single-center retrospective in vitro correlation between spectral properties, namely ρ/Z values, derived from scanning blood samples using dual-energy computed tomography (DECT) with the corresponding laboratory hemoglobin/hematocrit (Hb/Hct) levels and assessed the potential in anemia-detection. METHODS: DECT of 813 patient blood samples from 465 women and 348 men was conducted using a standardized scan protocol. Electron density relative to water (ρ or rho), effective atomic number (Zeff), and CT attenuation (Hounsfield unit) were measured. RESULTS: Positive correlation with the Hb/Hct was shown for ρ (r-values 0.37-0.49) and attenuation (r-values 0.59-0.83) while no correlation was observed for Zeff (r-values -0.04 to 0.08). Significant differences in attenuation and ρ values were detected for blood samples with and without anemia in both genders (p value < 0.001) with area under the curve ranging from 0.7 to 0.95. Depending on the respective CT parameters, various cutoff values for CT-based anemia detection could be determined. CONCLUSION: In summary, our study investigated the correlation between DECT measurements and Hb/Hct levels, emphasizing novel aspects of ρ and Zeff values. Assuming that quantitative changes in the number of hemoglobin proteins might alter the mean Zeff values, the results of our study show that there is no measurable correlation on the atomic level using DECT. We established a positive in vitro correlation between Hb/Hct values and ρ. Nevertheless, attenuation emerged as the most strongly correlated parameter with identifiable cutoff values, highlighting its preference for CT-based anemia detection. CLINICAL RELEVANCE STATEMENT: By scanning multiple blood samples with dual-energy CT scans and comparing the measurements with standard laboratory blood tests, we were able to underscore the potential of CT-based anemia detection and its advantages in clinical practice. KEY POINTS: Prior in vivo studies have found a correlation between aortic blood pool and measured hemoglobin and hematocrit. Hemoglobin and hematocrit correlated with electron density relative to water and attenuation but not Zeff. Dual-energy CT has the potential for additional clinical benefits, such as CT-based anemia detection.

2.
Radiol Cardiothorac Imaging ; 6(2): e230217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451189

RESUMO

Purpose To compare image quality, diagnostic performance, and conspicuity between single-energy and multi-energy images for endoleak detection at CT angiography (CTA) after endovascular aortic repair (EVAR). Materials and Methods In this single-center prospective randomized controlled trial, individuals undergoing CTA after EVAR between August 2020 and May 2022 were allocated to imaging using either low-kilovolt single-energy images (SEI; 80 kV, group A) or low-kiloelectron volt virtual monoenergetic images (VMI) at 40 and 50 keV from multi-energy CT (80/Sn150 kV, group B). Scan protocols were dose matched (volume CT dose index: mean, 4.5 mGy ± 1.8 [SD] vs 4.7 mGy ± 1.3, P = .41). Contrast-to-noise ratio (CNR) was measured. Two expert radiologists established the reference standard for the presence of endoleaks. Detection and conspicuity of endoleaks and subjective image quality were assessed by two different blinded radiologists. Interreader agreement was calculated. Nonparametric statistical tests were used. Results A total of 125 participants (mean age, 76 years ± 8; 103 men) were allocated to groups A (n = 64) and B (n = 61). CNR was significantly lower for 40-keV VMI (mean, 19.1; P = .048) and 50-keV VMI (mean, 16.8; P < .001) as compared with SEI (mean, 22.2). In total, 45 endoleaks were present (A: 23 vs B: 22). Sensitivity for endoleak detection was higher for SEI (82.6%, 19 of 23; P = .88) and 50-keV VMI (81.8%, 18 of 22; P = .90) as compared with 40-keV VMI (77.3%, 17 of 22). Specificity was comparable among groups (SEI: 92.7%, 38 of 41; both VMI energies: 92.3%, 35 of 38; P = .99), with an interreader agreement of 1. Conspicuity of endoleaks was comparable between SEI (median, 2.99) and VMI (both energies: median, 2.87; P = .04). Overall subjective image quality was rated significantly higher for SEI (median, 4 [IQR, 4-4) as compared with 40 and 50 keV (both energies: median, 4 [IQR, 3-4]; P < .001). Conclusion SEI demonstrated higher image quality and comparable diagnostic accuracy as compared with 50-keV VMI for endoleak detection at CTA after EVAR. Keywords: Aneurysms, CT, CT Angiography, Vascular, Aorta, Technology Assessment, Multidetector CT, Abdominal Aortic Aneurysms, Endoleaks, Perigraft Leak Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Angiografia por Tomografia Computadorizada , Endoleak , Idoso , Humanos , Masculino , Aorta , Endoleak/diagnóstico por imagem , Fenômenos Físicos , Estudos Prospectivos , Feminino
3.
Eur J Radiol ; 166: 110981, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478655

RESUMO

PURPOSE: To assess image quality and detectability of interstitial lung changes using multiple radiation doses from the same chest CT scan of patients with suspected interstitial lung disease (ILD). METHOD: Retrospective study of consecutive adult patients with suspected ILD receiving unenhanced chest CT as single-energy dual-source acquisition at 100 kVp (Dual-split mode). 67% and 33% of the overall tube current time product were assigned to tube A and B, respectively. 100%-dose was 2.34 ± 0.97 mGy. Five different radiation doses (100%, 67%, 45%, 39%, 33%) were reconstructed from this single acquisition using linear-blending technique. Two blinded radiologists assessed reticulations, ground-glass opacities (GGO) and honeycombing as well as subjective image noise. Percentage agreement (PA) as compared to 100%-dose were calculated. Non-parametric statistical tests were used. RESULTS: A total of 228 patients were included (61.2 ± 14.6 years,146 female). PA was highest for honeycombing (>96%) and independent of dose reduction (P > 0.8). PA for reticulations and GGO decreased when reducing the radiation dose from 100% to 67% for both readers (reticulations: 83.3% and 93.9%; GGO: 87.7% and 79.8% for reader 1 and 2, respectively). Additional dose reduction did not significantly change PA for both readers (all P > 0.05). Subjective image noise increased with decreasing radiation dose (Spearman Rho of ρ = 0.34 and ρ = 0.53 for reader 1 and 2, respectively, P < 0.001). CONCLUSIONS: Radiation dose reduction had a stronger impact on subtle interstitial lung changes. Detectability decreased with initial dose reduction indicating that a minimum dose is needed to maintain diagnostic accuracy in chest CT for suspected ILD.


Assuntos
Doenças Pulmonares Intersticiais , Tomografia Computadorizada por Raios X , Adulto , Humanos , Feminino , Estudos Retrospectivos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem
4.
Radiol Cardiothorac Imaging ; 5(1): e220140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36860835

RESUMO

Purpose: To develop and evaluate a low-volume contrast media protocol for thoracoabdominal CT angiography (CTA) with photon-counting detector (PCD) CT. Materials and Methods: This prospective study included consecutive participants (April-September 2021) who underwent CTA with PCD CT of the thoracoabdominal aorta and previous CTA with energy-integrating detector (EID) CT at equal radiation doses. In PCD CT, virtual monoenergetic images (VMI) were reconstructed in 5-keV intervals from 40 to 60 keV. Attenuation of the aorta, image noise, and contrast-to-noise ratio (CNR) were measured, and subjective image quality was rated by two independent readers. In the first group of participants, the same contrast media protocol was used for both scans. CNR gain in PCD CT compared with EID CT served as the reference for contrast media volume reduction in the second group. Noninferiority analysis was used to test noninferior image quality of the low-volume contrast media protocol with PCD CT. Results: The study included 100 participants (mean age, 75 years ± 8 [SD]; 83 men). In the first group (n = 40), VMI at 50 keV provided the best trade-off between objective and subjective image quality, achieving 25% higher CNR compared with EID CT. Contrast media volume in the second group (n = 60) was reduced by 25% (52.5 mL). Mean differences in CNR and subjective image quality between EID CT and PCD CT at 50 keV were above the predefined boundaries of noninferiority (-0.54 [95% CI: -1.71, 0.62] and -0.36 [95% CI: -0.41, -0.31], respectively). Conclusion: CTA of the aorta with PCD CT was associated with higher CNR, which was translated into a low-volume contrast media protocol demonstrating noninferior image quality compared with EID CT at the same radiation dose.Keywords: CT Angiography, CT-Spectral, Vascular, Aorta, Contrast Agents-Intravenous, Technology Assessment© RSNA, 2023See also the commentary by Dundas and Leipsic in this issue.

5.
In Vivo ; 37(1): 99-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593029

RESUMO

BACKGROUND/AIM: The aim was to evaluate the effect of a combined precision matrix and high sampling rate on the delineation of anatomical structures and objective image quality in single source CT in a qualitative approach. MATERIALS AND METHODS: An anthropomorphic thoracic phantom was used to evaluate the objective image quality parameters, including image noise, noise power spectrum, image stepness and Q for different CT scanners including high/standard matrix and framing frequency setups. Scan parameters were standardized over all scanners. Additional subjective quality assessment was also performed. RESULTS: A linear mixed effects model was used to determine the effect of sampling rate and image matrix on objective image quality parameters. Noise power spectrum and image noise were significantly influenced by both framing frequency and image matrix. There were significant differences between high and standard frequency/matrix acquisitions. CONCLUSION: Higher framing frequency and image matrix allows for improved image noise texture and objective image quality in CT.


Assuntos
Tomografia Computadorizada por Raios X , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Imagens de Fantasmas
6.
Invest Radiol ; 57(12): 773-779, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640003

RESUMO

OBJECTIVE: The aim of this study was to determine the potential of photon-counting detector computed tomography (PCD-CT) for radiation dose reduction compared with conventional energy-integrated detector CT (EID-CT) in the assessment of interstitial lung disease (ILD) in systemic sclerosis (SSc) patients. METHODS: In this retrospective study, SSc patients receiving a follow-up noncontrast chest examination on a PCD-CT were included between May 2021 and December 2021. Baseline scans were generated on a dual-source EID-CT by selecting the tube current-time product for each of the 2 x-ray tubes to obtain a 100% (D 100 ), a 66% (D 66 ), and a 33% dose image (D 33 ) from the same data set. Slice thickness and kernel were adjusted between the 2 scans. Image noise was assessed by placing a fixed region of interest in the subcutaneous fat. Two independent readers rated subjective image quality (5-point Likert scale), presence, extent, diagnostic confidence, and accuracy of SSc-ILD. D 100 interpreted by a radiologist with 22 years of experience served as reference standard. Interobserver agreement was calculated with Cohen κ, and mean variables were compared by a paired t test. RESULTS: Eighty patients (mean 56 ± 14; 64 women) were included. Although CTDI vol of PCD-CT was comparable to D 33 (0.72 vs 0.76 mGy, P = 0.091), mean image noise of PCD-CT was comparable to D 100 (131 ± 15 vs 113 ± 12, P > 0.05). Overall subjective image quality of PCD-CT was comparable to D 100 (4.72 vs 4.71; P = 0.874). Diagnostic accuracy was higher in PCD-CT compared with D 33 /D 66 (97.6% and 92.5%/96.3%, respectively) and comparable to D 100 (98.1%). CONCLUSIONS: With PCD-CT, a radiation dose reduction of 66% compared with EID-CT is feasible, without penalty in image quality and diagnostic performance for the evaluation of ILD.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Feminino , Imagens de Fantasmas , Fótons , Redução da Medicação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico por imagem
7.
Quant Imaging Med Surg ; 12(1): 726-741, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993114

RESUMO

BACKGROUND: To compare task-based image quality (TB-IQ) among virtual monoenergetic images (VMI) and linear-blended images (LBI) from dual-energy CT as a function of contrast task, radiation dose, size, and lesion diameter. METHODS: A TB-IQ phantom (Mercury Phantom 4.0, Sun Nuclear Corporation) was imaged on a third-generation dual-source dual-energy CT with 100/Sn150 kVp at three volume CT dose levels (5, 10, 15 mGy). Three size sections (diameters 16, 26, 36 cm) with subsections for image noise and spatial resolution analysis were used. High-contrast tasks (e.g., calcium-containing stone and vascular lesion) were emulated using bone and iodine inserts. A low-contrast task (e.g., low-contrast lesion or hematoma) was emulated using a polystyrene insert. VMI at 40-190 keV and LBI were reconstructed. Noise power spectrum (NPS) determined the noise magnitude and texture. Spatial resolution was assessed using the task-transfer function (TTF) of the three inserts. The detectability index (d') served as TB-IQ metric. RESULTS: Noise magnitude increased with increasing phantom size, decreasing dose, and decreasing VMI-energy. Overall, noise magnitude was higher for VMI at 40-60 keV compared to LBI (range of noise increase, 3-124%). Blotchier noise texture was found for low and high VMIs (40-60 keV, 130-190 keV) compared to LBI. No difference in spatial resolution was observed for high contrast tasks. d' increased with increasing dose level or lesion diameter and decreasing size. For high-contrast tasks, d' was higher at 40-80 keV and lower at high VMIs. For the low-contrast task, d' was higher for VMI at 70-90 keV and lower at 40-60 keV. CONCLUSIONS: Task-based image quality differed among VMI-energy and LBI dependent on the contrast task, dose level, phantom size, and lesion diameter. Image quality could be optimized by tailoring VMI-energy to the contrast task. Considering the clinical relevance of iodine, VMIs at 50-60 keV could be proposed as an alternative to LBI.

8.
Acad Radiol ; 29(5): 689-697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34389259

RESUMO

RATIONALE AND OBJECTIVES: To determine quantitative and qualitative image quality of contrast-enhanced abdominal photon-counting detector CT (PCD-CT) compared to energy-integrating detector CT (EID-CT) in the same patients. MATERIAL AND METHODS: Thirty-nine patients (mean age 63 ± 10 years, 10 females, mean BMI 26.0 ± 5.7 kg/m2) were retrospectively included who underwent clinically indicated, contrast-enhanced abdominal CT in portal-venous phase with first-generation dual-source PCD-CT and who underwent previous abdominal CT with EID-CT. For both scan, same contrast media protocol was used. PCD-CT was performed in QuantumPlus mode (obtaining full spectral information) at 120kVp. EID-CT was performed using automated tube voltage selection (reference tube voltage 100kVp). In PCD-CT, virtual monoenergetic images (VMI) were reconstructed in 10keV intervals (40-90 keV). Tube current-time product in PCD-CT was modified in each patient to obtain same volume CT-dose-index (CTDIvol) as with EID-CT. Attenuation of organs and vascular structures were measured, noise quantified, and contrast-to-noise ratio (CNR) calculated. Two independent, blinded radiologists assessed subjective image quality using a 5-point Likert scale (overall image quality, image noise, contrast, and liver lesion conspicuity). RESULTS: Median time interval between the scan was 12 months. BMI (p = 0.905) and CTDIvol (p = 0.984) were similar between scans. CNRparenchymal and CNRvascular of VMI from PCD-CT at 40 and 50keV were significantly higher than EID-CT (all, p < 0.05). Overall, inter-reader agreement for all subjective image quality readings was substantial (Krippendorff's alpha = 0.773). Overall image quality of VMI was rated similar at 50 and 60 keV compared to EID-CT (all, p > 0.05). Subjective image noise was significantly higher at 40-50 keV, contrast significantly higher at 40-60 keV (all, p < 0.05). Lesion conspicuity was rated similar on all images. CONCLUSION: Our intra-individual analysis of abdominal PCD-CT indicates that VMI at 50 keV shows significantly higher CNR at similar subjective image quality as compared to EID-CT at identical radiation dose.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
9.
Invest Radiol ; 56(10): 614-620, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787538

RESUMO

PURPOSE: The aim of this study was to assess the accuracy and impact of different sizes and tube voltages on bone mineral density (BMD) assessment using a computed tomography (CT) topogram acquired with photon-counting detector CT in an osteopenic ex vivo animal spine. MATERIALS AND METHODS: The lumbar back of a piglet was used to simulate osteopenia of the lumbar spine. Five fat layers (each with a thickness of 3 cm) were consecutively placed on top of the excised spine to emulate a total of 5 different sizes. Each size was repeatedly imaged on (A) a conventional dual-energy x-ray absorptiometry scanner as the reference standard, (B) a prototype photon-counting detector CT system at 120 kVp with energy thresholds at 20 and 70 keV, and (C) the same prototype system at 140 kVp with thresholds at 20 and 75 keV. Material-specific data were reconstructed from spectral topograms for B and C. Bone mineral density was measured for 3 lumbar vertebrae (L2-L4). A linear mixed-effects model was used to estimate the impact of vertebra, imaging setup, size, and their interaction term on BMD. RESULTS: The BMD of the lumbar spine corresponded to a T score in humans between -4.2 and -4.8, which is seen in osteoporosis. Averaged across the 3 vertebrae and 5 sizes, mean BMD was 0.56 ± 0.03, 0.55 ± 0.02, and 0.55 ± 0.02 g/cm2 for setup A, B, and C, respectively. There was no significant influence of imaging setup (P = 0.7), simulated size (P = 0.67), and their interaction term (both P > 0.2) on BMD. Bone mineral density decreased significantly from L2 to L4 for all 3 setups (all P < 0.0001). Bone mineral density was 0.59 ± 0.01, 0.57 ± 0.01, and 0.52 ± 0.02 g/cm2 for L2, L3, and L4, respectively, for setup A; 0.57 ± 0.02, 0.55 ± 0.01, and 0.53 ± 0.01 g/cm2 for setup B; and 0.57 ± 0.01, 0.55 ± 0.01, and 0.53 ± 0.01 g/cm2 for setup C. CONCLUSION: A single CT topogram acquired on photon-counting detector CT with 2 energy thresholds enabled BMD quantification with similar accuracy compared with dual-energy x-ray absorptiometry over a range of simulated sizes and tube voltages in an osteopenic ex vivo animal spine.


Assuntos
Densidade Óssea , Osteoporose , Absorciometria de Fóton , Animais , Humanos , Vértebras Lombares/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X
10.
Invest Radiol ; 56(9): 563-570, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33660630

RESUMO

PURPOSE: The aim of this study was to systematically evaluate the potential to combine investigational contrast media with spectrally optimized energy-thresholding of photon-counting detector computed tomography (PCCT) for subtraction of calcified plaques in a coronary artery stenosis phantom. METHODS: A small vessel phantom containing 3 fillable tubes (diameter, 3 mm each) with calcified plaques was placed into an anthropomorphic chest phantom. The plaques had incremental thicknesses ranging from 0.3 to 2.7 mm, simulating vessel stenoses ranging from 10% to 90% of the lumen diameter. The phantom was filled with 5 different investigational contrast media (iodine, bismuth, hafnium, holmium, and tungsten) at equal mass concentrations (15 mg/mL) and was imaged on a prototype PCCT at 140 kVp using optimized, contrast media-dependent energy thresholds. Contrast maps (CMs) were reconstructed for each contrast medium by applying a linear 2-material decomposition algorithm. Image noise magnitude and noise texture of CM were compared among the contrast media using the noise power spectrum. Two blinded readers independently rated the vessel lumen visualization on short-axis and the overall subjective image quality on long-axis CM relative to iodine as the reference standard. Four readers determined the highest degree of stenosis that could be assessed with high diagnostic confidence on long-axis CM. RESULTS: Average image noise on CM was lower for tungsten (49 HU) and hafnium (62 HU) and higher for bismuth (81 HU) and holmium (165 HU) compared with iodine (78 HU). Noise texture of CM was similar among the contrast media. Interreader agreement for vessel lumen visualization on short-axis CM ranged from moderate to excellent (k = 0.567-0.814). Compared with iodine, lumen visualization of each reader was improved using tungsten (P < 0.001 for both readers), similar to improved using hafnium (P = 0.008, P = 0.29), similar using bismuth (P = 0.38, P = 0.69), and decreased using holmium (both, P < 0.001). Overall subjective image quality was similar for holmium and superior for tungsten, hafnium, and bismuth as compared with iodine. Higher-degree stenoses were evaluable with high confidence using tungsten (mean, 70%; interquartile range, 70%-70%), bismuth (70%; 60%-70%), and hafnium (75%; 70%-80%) compared with iodine (50%; 50%-60%) and holmium (50%; 50%-60%). CONCLUSIONS: Spectral optimization in PCCT combined with investigational contrast media can improve calcium subtraction and stenosis assessment in small vessels. Contrast maps of tungsten and, to a lesser extent, hafnium as contrast media yielded superior image noise properties and improved vessel lumen visualization, along with a higher subjective image quality compared with the reference standard iodine.


Assuntos
Meios de Contraste , Iodo , Constrição Patológica , Humanos , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X
11.
Cardiovasc Diagn Ther ; 10(4): 820-830, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968637

RESUMO

BACKGROUND: Computed tomography (CT)-derived fractional flow reserve (FFRCT) enables the non-invasive functional assessment of coronary artery stenosis. We evaluated the feasibility and potential clinical role of FFRCT in patients presenting to the emergency department with acute chest pain who underwent chest-pain CT (CPCT). METHODS: For this retrospective IRB-approved study, we included 56 patients (median age: 62 years, 14 females) with acute chest pain who underwent CPCT and who had at least a mild (≥25% diameter) coronary artery stenosis. CPCT was evaluated for the presence of acute plaque rupture and vulnerable plaque features. FFRCT measurements were performed using a machine learning-based software. We assessed the agreement between the results from FFRCT and patient outcome (including results from invasive catheter angiography and from any non-invasive cardiac imaging test, final clinical diagnosis and revascularization) for a follow-up of 3 months. RESULTS: FFRCT was technically feasible in 38/56 patients (68%). Eleven of the 38 patients (29%) showed acute plaque rupture in CPCT; all of them underwent immediate coronary revascularization. Of the remaining 27 patients (71%), 16 patients showed vulnerable plaque features (59%), of whom 11 (69%) were diagnosed with acute coronary syndrome (ACS) and 10 (63%) underwent coronary revascularization. In patients with vulnerable plaque features in CPCT, FFRCT had an agreement with outcome in 12/16 patients (75%). In patients without vulnerable plaque features (n=11), one patient showed myocardial ischemia (9%). In these patients, FFRCT and patient outcome showed an agreement in 10/11 patients (91%). CONCLUSIONS: Our preliminary data show that FFRCT is feasible in patients with acute chest pain who undergo CPCT provided that image quality is sufficient. FFRCT has the potential to improve patient triage by reducing further downstream testing but appears of limited value in patients with CT signs of acute plaque rupture.

12.
PLoS One ; 15(4): e0232372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348366

RESUMO

OBJECTIVES: Non-Cartesian Spiral readout can be implemented in 3D Time-of-flight (TOF) MR angiography (MRA) with short acquisition times. In this intra-individual comparison study we evaluated the clinical feasibility of Spiral TOF MRA in comparison with compressed sensing accelerated TOF MRA at 1.5T for intracranial vessel imaging as it has yet to be determined. MATERIALS AND METHODS: Forty-four consecutive patients with suspected intracranial vascular disease were imaged with two Spiral 3D TOFs (Spiral, 0.82x0.82x1.2 mm3, 01:32 min; Spiral 0.8, 0.8x0.8x0.8 mm3, 02:12 min) and a Compressed SENSE accelerated 3D TOF (CS 3.5, 0.82x0.82x1.2 mm3, 03:06 min) at 1.5T. Two neuroradiologists assessed qualitative (visualization of central and peripheral vessels) and quantitative image quality (Contrast Ratio, CR) and performed lesion and variation assessment for all three TOFs in each patient. After the rating process, the readers were questioned and representative cases were reinspected in a non-blinded fashion. For statistical analysis, the Friedman and Nemenyi post-hoc test, Kendall W tests, repeated measure ANOVA and weighted Cohen's Kappa tests were used. RESULTS: The Spiral and Spiral 0.8 outperformed the CS 3.5 in terms of peripheral image quality (p<0.001) and performed equally well in terms of central image quality (p>0.05). The readers noted slight differences in the appearance of maximum intensity projection images. A good to high degree of interstudy agreement between the three TOFs was observed for lesion and variation assessment (W = 0.638, p<0.001 -W = 1, p<0.001). CR values did not differ significantly between the three TOFs (p = 0.534). Interreader agreement ranged from good (K = 0.638) to excellent (K = 1). CONCLUSIONS: Compared to the CS 3.5, both the Spiral and Spiral 0.8 exhibited comparable or better image quality and comparable diagnostic performance at much shorter acquisition times.


Assuntos
Angiografia Cerebral/métodos , Transtornos Cerebrovasculares/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiografia Cerebral/economia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/economia , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/economia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
13.
J Magn Reson Imaging ; 51(1): 108-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150142

RESUMO

BACKGROUND: Differentiation of early postoperative complications affects treatment options after lung transplantation. PURPOSE: To assess if texture analysis in ultrashort echo-time (UTE) MRI allows distinction of primary graft dysfunction (PGD) from acute transplant rejection (ATR) in a mouse lung transplant model. STUDY TYPE: Longitudinal. ANIMAL MODEL: Single left lung transplantation was performed in two cohorts of six mice (strain C57BL/6) receiving six syngeneic (strain C57BL/6) and six allogeneic lung transplants (strain BALB/c (H-2Kd )). FIELD STRENGTH/SEQUENCE: 4.7T small-animal MRI/eight different UTE sequences (echo times: 50-5000 µs) at three different postoperative timepoints (1, 3, and 7 days after transplantation). ASSESSMENT: Nineteen different first- and higher-order texture features were computed on multiple axial slices for each combination of UTE and timepoint (24 setups) in each mouse. Texture features were compared for transplanted (graft) and contralateral native lungs between and within syngeneic and allogeneic cohorts. Histopathology served as a reference. STATISTICAL TESTS: Nonparametric tests and correlation matrix analysis were used. RESULTS: Pathology revealed PGD in the syngeneic and ATR in the allogeneic cohort. Skewness and low-gray-level run-length features were significantly different between PGD and ATR for all investigated setups (P < 0.03). These features were significantly different between graft and native lung in ATR for most setups (minimum of 20/24 setups; all P < 0.05). The number of significantly different features between PGD and ATR increased with elapsing postoperative time. Differences in significant features were highest for an echo-time of 1500 µs. DATA CONCLUSION: Our findings suggest that texture analysis in UTE-MRI might be a tool for the differentiation of PGD and ATR in the early postoperative phase after lung transplantation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:108-116.


Assuntos
Rejeição de Enxerto/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Transplante de Pulmão , Imageamento por Ressonância Magnética/métodos , Disfunção Primária do Enxerto/diagnóstico por imagem , Doença Aguda , Animais , Diagnóstico Diferencial , Modelos Animais de Doenças , Rejeição de Enxerto/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Disfunção Primária do Enxerto/fisiopatologia
14.
Invest Radiol ; 51(8): 491-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26895193

RESUMO

OBJECTIVE: The aim of this study was to investigate the image quality, radiation dose, and accuracy of virtual noncontrast images and iodine quantification of split-filter dual-energy computed tomography (CT) using a single x-ray source in a phantom and patient study. MATERIALS AND METHODS: In a phantom study, objective image quality and accuracy of iodine quantification were evaluated for the split-filter dual-energy mode using a tin and gold filter. In a patient study, objective image quality and radiation dose were compared in thoracoabdominal CT of 50 patients between the standard single-energy and split-filter dual-energy mode. The radiation dose was estimated by size-specific dose estimate. To evaluate the accuracy of virtual noncontrast imaging, attenuation measurements in the liver, spleen, and muscle were compared between a true noncontrast premonitoring scan and the virtual noncontrast images of the dual-energy scans. Descriptive statistics and the Mann-Whitney U test were used. RESULTS: In the phantom study, differences between the real and measured iodine concentration ranged from 2.2% to 21.4%. In the patient study, the single-energy and dual-energy protocols resulted in similar image noise (7.4 vs 7.1 HU, respectively; P = 0.43) and parenchymal contrast-to-noise ratio (CNR) values for the liver (29.2 vs 28.5, respectively; P = 0.88). However, the vascular CNR value for the single-energy protocol was significantly higher than for the dual-energy protocol (10.0 vs 7.1, respectively; P = 0.006). The difference in the measured attenuation between the true and the virtual noncontrast images ranged from 3.1 to 6.7 HU. The size-specific dose estimate of the dual-energy protocol was, on average, 17% lower than that of the single-energy protocol (11.7 vs 9.7 mGy, respectively; P = 0.008). CONCLUSIONS: Split-filter dual-energy compared with single-energy CT results in similar objective image noise in addition to dual-energy capabilities at 17% lower radiation dose. Because of beam hardening, split-filter dual-energy can lead to decreased CNR values of iodinated structures.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Técnicas In Vitro , Iodo , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Radiografia Abdominal/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radiografia Torácica/métodos , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA