Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014667

RESUMO

Estimates of the energetic costs of locomotion (COL) at different activity levels are necessary to answer fundamental eco-physiological questions and to understand the impacts of anthropogenic disturbance to marine mammals. We combined estimates of energetic costs derived from breath-by-breath respirometry with measurements of overall dynamic body acceleration (ODBA) from biologging tags to validate ODBA as a proxy for COL in trained common bottlenose dolphins (Tursiops truncatus). We measured resting metabolic rate (RMR); mean individual RMR was 0.71-1.42 times that of a similarly sized terrestrial mammal and agreed with past measurements that used breath-by-breath and flow-through respirometry. We also measured energy expenditure during submerged swim trials, at primarily moderate exercise levels. We subtracted RMR to obtain COL, and normalized COL by body size to incorporate individual swimming efficiencies. We found both mass-specific energy expenditure and mass-specific COL were linearly related with ODBA. Measurements of activity level and cost of transport (the energy required to move a given distance) improve understanding of the COL in marine mammals. The strength of the correlation between ODBA and COL varied among individuals, but the overall relationship can be used at a broad scale to estimate the energetic costs of disturbance and daily locomotion costs to build energy budgets, and investigate the costs of diving in free-ranging animals where bio-logging data are available. We propose that a similar approach could be applied to other cetacean species.


Assuntos
Golfinho Nariz-de-Garrafa , Mergulho , Aceleração , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Mergulho/fisiologia , Metabolismo Energético , Natação/fisiologia
2.
J Exp Biol ; 224(Pt 1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188062

RESUMO

In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow ([Formula: see text]) using a custom-made pneumotachometer. Three female walruses (670-1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, [Formula: see text] was lower when walruses were lying down (e.g. expiration: 7.1±1.2 l s-1) as compared with in water (9.9±1.4 l s-1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s) and respiratory frequency (7.6±2.2 breaths min-1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O-1) for spontaneous breaths were higher than those estimated for similarly sized terrestrial mammals. VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3% to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory [Formula: see text] ([Formula: see text]exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. [Formula: see text]exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.


Assuntos
Morsas , Água , Animais , Feminino , Pulmão , Respiração , Espirometria
4.
J Anim Ecol ; 89(1): 161-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173339

RESUMO

It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.


Assuntos
Aceleração , Metabolismo Energético , Animais , Movimento
5.
J Exp Biol ; 211(Pt 22): 3573-80, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18978221

RESUMO

The metabolic costs of foraging and the management of O2 and CO2 stores during breath-hold diving was investigated in three female Steller sea lions (Eumetopias jubatus) trained to dive between 10 and 50 m (N=1142 dives). Each trial consisted of two to eight dives separated by surface intervals that were determined by the sea lion (spontaneous trials) or by the researcher (conditioned trials). During conditioned trials, surface intervals were long enough for O2 to return to pre-dive levels between each dive. The metabolic cost of each dive event (dive+surface interval; DMR) was measured using flow-through respirometry. The respiratory exchange ratio (VO2/VCO2) was significantly lower during spontaneous trials compared with conditioned trials. DMR was significantly higher during spontaneous trials and decreased exponentially with dive duration. A similar decrease in DMR was not as evident during conditioned trials. DMR could not be accurately estimated from the surface interval (SI) following individual dives that had short SIs (<50 s), but could be estimated on a dive by dive basis for longer SIs (>50 s). DMR decreased by 15%, but did not differ significantly from surface metabolic rates (MRS) when dive duration increased from 1 to 7 min. Overall, these data suggest that DMR is almost the same as MRS, and that Steller sea lions incur an O2 debt during spontaneous diving that is not repaid until the end of the dive bout. This has important consequences in differentiating between the actual and 'apparent' metabolic rate during diving, and may explain some of the differences in metabolic rates reported in pinniped species.


Assuntos
Metabolismo Energético , Leões-Marinhos/metabolismo , Animais , Dióxido de Carbono/metabolismo , Mergulho/fisiologia , Feminino , Oxigênio/metabolismo , Consumo de Oxigênio
6.
Zoology (Jena) ; 110(2): 81-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17363231

RESUMO

King penguins (Aptenodytes patagonicus) are one of the greatest consumers of marine resources. However, while their influence on the marine ecosystem is likely to be significant, only an accurate knowledge of their energy demands will indicate their true food requirements. Energy consumption has been estimated for many marine species using the heart rate-rate of oxygen consumption (f(H) - V(O2)) technique, and the technique has been applied successfully to answer eco-physiological questions. However, previous studies on the energetics of king penguins, based on developing or applying this technique, have raised a number of issues about the degree of validity of the technique for this species. These include the predictive validity of the present f(H) - V(O2) equations across different seasons and individuals and during different modes of locomotion. In many cases, these issues also apply to other species for which the f(H) - V(O2) technique has been applied. In the present study, the accuracy of three prediction equations for king penguins was investigated based on validity studies and on estimates of V(O2) from published, field f(H) data. The major conclusions from the present study are: (1) in contrast to that for walking, the f(H) - V(O2) relationship for swimming king penguins is not affected by body mass; (2) prediction equation (1), log(V(O2) = -0.279 + 1.24log(f(H) + 0.0237t - 0.0157log(f(H)t, derived in a previous study, is the most suitable equation presently available for estimating V(O2) in king penguins for all locomotory and nutritional states. A number of possible problems associated with producing an f(H) - V(O2) relationship are discussed in the present study. Finally, a statistical method to include easy-to-measure morphometric characteristics, which may improve the accuracy of f(H) - V(O2) prediction equations, is explained.


Assuntos
Metabolismo Energético , Spheniscidae/metabolismo , Animais , Frequência Cardíaca , Ilhas do Oceano Índico , Locomoção , Consumo de Oxigênio , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA