Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 107928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228029

RESUMO

Electrocardiogram (ECG) recordings obtained from wearable devices are susceptible to noise interference that degrades the signal quality. Traditional methods for assessing the quality of electrocardiogram signals (SQA) are mostly supervised and typically rely on limited types of noise in the training data, which imposes limitations in detecting unknown anomalies. The high variability of both ECG signals and noise presents a greater challenge to the generalization of traditional methods. In this paper, we propose a simple and effective unsupervised SQA method by modeling the SQA of ECG as a problem of anomaly detection, in which, a model of pseudo anomalies enhanced deep support vector data description is introduced to learn a more discriminative and generalized hypersphere of the high-quality ECG in a self-supervised manner. Specifically, we propose a series of ECG noise-generation methods to simulate the noise of real scenarios and use the generated noise samples as the pseudo anomalies to correct the hypersphere learned solely by the high-quality ECG samples. Finally, the quality of ECG can be measured based on the distance to the center of the hypersphere. Extensive experimental results on multiple public datasets and our constructed real-world 12-lead dataset demonstrate the effectiveness of the proposed method.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Aprendizagem
2.
J Ethnopharmacol ; 297: 115109, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The recommendation of herbal prescriptions is a focus of research in traditional Chinese medicine (TCM). Artificial intelligence (AI) algorithms can generate prescriptions by analysing symptom data. Current models mainly focus on the binary relationships between a group of symptoms and a group of TCM herbs. A smaller number of existing models focus on the ternary relationships between TCM symptoms, syndrome-types and herbs. However, the process of TCM diagnosis (symptom analysis) and treatment (prescription) is, in essence, a "multi-ary" (n-ary) relationship. Present models fall short of considering the n-ary relationships between symptoms, state-elements, syndrome-types and herbs. Therefore, there is room for improvement in TCM herbal prescription recommendation models. PURPOSE: To portray the n-ary relationship, this study proposes a prescription recommendation model based on a multigraph convolutional network (MGCN). It introduces two essential components of the TCM diagnosis process: state-elements and syndrome-types. METHODS: The MGCN consists of two modules: a TCM feature-aggregation module and a herbal medicine prediction module. The TCM feature-aggregation module simulates the n-ary relationships between symptoms and prescriptions by constructing a symptom-'state element'-symptom graph (Se) and a symptom-'syndrome-type'-symptom graph (Ts). The herbal medicine prediction module inputs state-elements, syndrome-types and symptom data and uses a multilayer perceptron (MLP) to predict a corresponding herbal prescription. To verify the effectiveness of the proposed model, numerous quantitative and qualitative experiments were conducted on the Treatise on Febrile Diseases dataset. RESULTS: In the experiments, the MGCN outperformed three other algorithms used for comparison. In addition, the experimental data shows that, of these three algorithms, the SVM performed best. The MGCN was 4.51%, 6.45% and 5.31% higher in Precision@5, Recall@5 and F1-score@5, respectively, than the SVM. We set the K-value to 5 and conducted two qualitative experiments. In the first case, all five herbs in the label were correctly predicted by the MGCN. In the second case, four of the five herbs were correctly predicted. CONCLUSIONS: Compared with existing AI algorithms, the MGCN significantly improved the accuracy of TCM herbal prescription recommendations. In addition, the MGCN provides a more accurate TCM prescription herbal recommendation scheme, giving it great practical application value.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Inteligência Artificial , Prescrições de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA