Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Magn Reson ; 25(1): 5, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717885

RESUMO

BACKGROUND: Decisions in the management of aortic stenosis are based on the peak pressure drop, captured by Doppler echocardiography, whereas gold standard catheterization measurements assess the net pressure drop but are limited by associated risks. The relationship between these two measurements, peak and net pressure drop, is dictated by the pressure recovery along the ascending aorta which is mainly caused by turbulence energy dissipation. Currently, pressure recovery is considered to occur within the first 40-50 mm distally from the aortic valve, albeit there is inconsistency across interventionist centers on where/how to position the catheter to capture the net pressure drop. METHODS: We developed a non-invasive method to assess the pressure recovery distance based on blood flow momentum via 4D Flow cardiovascular magnetic resonance (CMR). Multi-center acquisitions included physical flow phantoms with different stenotic valve configurations to validate this method, first against reference measurements and then against turbulent energy dissipation (respectively n = 8 and n = 28 acquisitions) and to investigate the relationship between peak and net pressure drops. Finally, we explored the potential errors of cardiac catheterisation pressure recordings as a result of neglecting the pressure recovery distance in a clinical bicuspid aortic valve (BAV) cohort of n = 32 patients. RESULTS: In-vitro assessment of pressure recovery distance based on flow momentum achieved an average error of 1.8 ± 8.4 mm when compared to reference pressure sensors in the first phantom workbench. The momentum pressure recovery distance and the turbulent energy dissipation distance showed no statistical difference (mean difference of 2.8 ± 5.4 mm, R2 = 0.93) in the second phantom workbench. A linear correlation was observed between peak and net pressure drops, however, with strong dependences on the valvular morphology. Finally, in the BAV cohort the pressure recovery distance was 78.8 ± 34.3 mm from vena contracta, which is significantly longer than currently accepted in clinical practise (40-50 mm), and 37.5% of patients displayed a pressure recovery distance beyond the end of the ascending aorta. CONCLUSION: The non-invasive assessment of the distance to pressure recovery is possible by tracking momentum via 4D Flow CMR. Recovery is not always complete at the ascending aorta, and catheterised recordings will overestimate the net pressure drop in those situations. There is a need to re-evaluate the methods that characterise the haemodynamic burden caused by aortic stenosis as currently clinically accepted pressure recovery distance is an underestimation.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Humanos , Valor Preditivo dos Testes , Estenose da Valva Aórtica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Valva Aórtica/diagnóstico por imagem , Hemodinâmica , Espectroscopia de Ressonância Magnética , Velocidade do Fluxo Sanguíneo/fisiologia
2.
J Cardiovasc Transl Res ; 15(5): 1075-1085, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35199256

RESUMO

Aortic surgeries in congenital conditions, such as hypoplastic left heart syndrome (HLHS), aim to restore and maintain the conduit and reservoir functions of the aorta. We proposed a method to assess these two functions based on 4D flow MRI, and we applied it to study the aorta in pre-Fontan HLHS. Ten pre-Fontan HLHS patients and six age-matched controls were studied to derive the advective pressure difference and viscous dissipation for conduit function, and pulse wave velocity and elastic modulus for reservoir function. The reconstructed neo-aorta in HLHS subjects achieved a good conduit function at a cost of an impaired reservoir function (69.7% increase of elastic modulus). The native descending HLHS aorta displayed enhanced reservoir (elastic modulus being 18.4% smaller) but impaired conduit function (three-fold increase in peak advection). A non-invasive and comprehensive assessment of aortic conduit and reservoir functions is feasible and has potentially clinical relevance in congenital vascular conditions.


Assuntos
Aorta Torácica , Síndrome do Coração Esquerdo Hipoplásico , Humanos , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Análise de Onda de Pulso , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Aorta/diagnóstico por imagem , Aorta/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA