Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Microbe ; 4(5): e319-e329, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031687

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is an Aedes mosquito-borne virus that has caused large epidemics linked to acute, chronic, and severe clinical outcomes. Currently, Brazil has the highest number of chikungunya cases in the Americas. We aimed to investigate the spatiotemporal dynamics and recurrence pattern of chikungunya in Brazil since its introduction in 2013. METHODS: In this epidemiological study, we used CHIKV genomic sequencing data, CHIKV vector information, and aggregate clinical data on chikungunya cases from Brazil. The genomic data comprised 241 Brazilian CHIKV genome sequences from GenBank (n=180) and the 2022 CHIKV outbreak in Ceará state (n=61). The vector data (Breteau index and House index) were obtained from the Brazilian Ministry of Health for all 184 municipalities in Ceará state and 116 municipalities in Tocantins state in 2022. Epidemiological data on laboratory-confirmed cases of chikungunya between 2013 and 2022 were obtained from the Brazilian Ministry of Health and Laboratory of Public Health of Ceará. We assessed the spatiotemporal dynamics of chikungunya in Brazil via time series, mapping, age-sex distribution, cumulative case-fatality, linear correlation, logistic regression, and phylogenetic analyses. FINDINGS: Between March 3, 2013, and June 4, 2022, 253 545 laboratory-confirmed chikungunya cases were reported in 3316 (59·5%) of 5570 municipalities, mainly distributed in seven epidemic waves from 2016 to 2022. To date, Ceará in the northeast has been the most affected state, with 77 418 cases during the two largest epidemic waves in 2016 and 2017 and the third wave in 2022. From 2016 to 2022 in Ceará, the odds of being CHIKV-positive were higher in females than in males (odds ratio 0·87, 95% CI 0·85-0·89, p<0·0001), and the cumulative case-fatality ratio was 1·3 deaths per 1000 cases. Chikungunya recurrences in the states of Ceará, Tocantins (recurrence in 2022), and Pernambuco (recurrence in 2021) were limited to municipalities with few or no previously reported cases in the previous epidemic waves. The recurrence of chikungunya in Ceará in 2022 was associated with a new East-Central-South-African lineage. Population density metrics of the main CHIKV vector in Brazil, Aedes aegypti, were not correlated spatially with locations of chikungunya recurrence in Ceará and Tocantins. INTERPRETATION: Spatial heterogeneity of CHIKV spread and population immunity might explain the recurrence pattern of chikungunya in Brazil. These results can be used to inform public health interventions to prevent future chikungunya epidemic waves in urban settings. FUNDING: Global Virus Network, Burroughs Wellcome Fund, Wellcome Trust, US National Institutes of Health, São Paulo Research Foundation, Brazil Ministry of Education, UK Medical Research Council, Brazilian National Council for Scientific and Technological Development, and UK Royal Society. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Masculino , Animais , Feminino , Humanos , Vírus Chikungunya/genética , Febre de Chikungunya/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Estudos Epidemiológicos
2.
Lancet Reg Health Am ; 5: None, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35098203

RESUMO

BACKGROUND: Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. METHODS: We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt ). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. FINDINGS: After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt ) were largely driven by geographic location and the date of local onset. INTERPRETATION: This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. FUNDING: This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0).

3.
Clin Infect Dis ; 75(1): e224-e233, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34549260

RESUMO

BACKGROUND: The public health impact of the coronavirus disease 2019 (COVID-19) pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. METHODS: Using a mathematical model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care. RESULTS: The impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R = 1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalization) could have much greater benefits, particularly in resource-poor settings facing large epidemics. CONCLUSIONS: Advances in the treatment of COVID-19 to date have been focused on hospitalized-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Efeitos Psicossociais da Doença , Humanos , Pandemias/prevenção & controle , Preparações Farmacêuticas
4.
medRxiv ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34751273

RESUMO

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma's spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma's detection, and were largely transient after Gamma's detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil's COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil's COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NOTE: The following manuscript has appeared as 'Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals' at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . ONE SENTENCE SUMMARY: COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

5.
medRxiv ; 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462754

RESUMO

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.

6.
BMJ Glob Health ; 6(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926892

RESUMO

INTRODUCTION: Little evidence exists on the differential health effects of COVID-19 on disadvantaged population groups. Here we characterise the differential risk of hospitalisation and death in São Paulo state, Brazil, and show how vulnerability to COVID-19 is shaped by socioeconomic inequalities. METHODS: We conducted a cross-sectional study using hospitalised severe acute respiratory infections notified from March to August 2020 in the Sistema de Monitoramento Inteligente de São Paulo database. We examined the risk of hospitalisation and death by race and socioeconomic status using multiple data sets for individual-level and spatiotemporal analyses. We explained these inequalities according to differences in daily mobility from mobile phone data, teleworking behaviour and comorbidities. RESULTS: Throughout the study period, patients living in the 40% poorest areas were more likely to die when compared with patients living in the 5% wealthiest areas (OR: 1.60, 95% CI 1.48 to 1.74) and were more likely to be hospitalised between April and July 2020 (OR: 1.08, 95% CI 1.04 to 1.12). Black and Pardo individuals were more likely to be hospitalised when compared with White individuals (OR: 1.41, 95% CI 1.37 to 1.46; OR: 1.26, 95% CI 1.23 to 1.28, respectively), and were more likely to die (OR: 1.13, 95% CI 1.07 to 1.19; 1.07, 95% CI 1.04 to 1.10, respectively) between April and July 2020. Once hospitalised, patients treated in public hospitals were more likely to die than patients in private hospitals (OR: 1.40%, 95% CI 1.34% to 1.46%). Black individuals and those with low education attainment were more likely to have one or more comorbidities, respectively (OR: 1.29, 95% CI 1.19 to 1.39; 1.36, 95% CI 1.27 to 1.45). CONCLUSIONS: Low-income and Black and Pardo communities are more likely to die with COVID-19. This is associated with differential access to quality healthcare, ability to self-isolate and the higher prevalence of comorbidities.


Assuntos
COVID-19/etnologia , COVID-19/mortalidade , Etnicidade/estatística & dados numéricos , Mortalidade Hospitalar/etnologia , Pneumonia Viral , Áreas de Pobreza , Características de Residência/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Estudos Transversais , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Estudos Soroepidemiológicos , Fatores Socioeconômicos
7.
Lancet Infect Dis ; 19(10): 1138-1147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559967

RESUMO

BACKGROUND: Zika virus infections and suspected microcephaly cases have been reported in Angola since late 2016, but no data are available about the origins, epidemiology, and diversity of the virus. We aimed to investigate the emergence and circulation of Zika virus in Angola. METHODS: Diagnostic samples collected by the Angolan Ministry of Health as part of routine arboviral surveillance were tested by real-time reverse transcription PCR by the Instituto Nacional de Investigação em Saúde (Ministry of Health, Luanda, Angola). To identify further samples positive for Zika virus and appropriate for genomic sequencing, we also tested samples from a 2017 study of people with HIV in Luanda. Portable sequencing was used to generate Angolan Zika virus genome sequences from three people positive for Zika virus infection by real-time reverse transcription PCR, including one neonate with microcephaly. Genetic and mobility data were analysed to investigate the date of introduction and geographical origin of Zika virus in Angola. Brain CT and MRI, and serological assays were done on a child with microcephaly to confirm microcephaly and assess previous Zika virus infection. FINDINGS: Serum samples from 54 people with suspected acute Zika virus infection, 76 infants with suspected microcephaly, 24 mothers of infants with suspected microcephaly, 336 patients with suspected dengue virus or chikungunya virus infection, and 349 samples from the HIV study were tested by real-time reverse transcription PCR. Four cases identified between December, 2016, and June, 2017, tested positive for Zika virus. Analyses of viral genomic and human mobility data suggest that Zika virus was probably introduced to Angola from Brazil between July, 2015, and June, 2016. This introduction probably initiated local circulation of Zika virus in Angola that continued until at least June, 2017. The infant with microcephaly in whom CT and MRI were done had brain abnormalities consistent with congenital Zika syndrome and serological evidence for Zika virus infection. INTERPRETATION: Our analyses show that autochthonous transmission of the Asian lineage of Zika virus has taken place in Africa. Zika virus surveillance and surveillance of associated cases of microcephaly throughout the continent is crucial. FUNDING: Royal Society, Wellcome Trust, Global Challenges Research Fund (UK Research and Innovation), Africa Oxford, John Fell Fund, Oxford Martin School, European Research Council, Departamento de Ciência e Tecnologia/Ministério da Saúde/National Council for Scientific and Technological Development, and Ministério da Educação/Coordenação de Aperfeicoamento de Pessoal de Nível Superior.


Assuntos
Surtos de Doenças , Transmissão Vertical de Doenças Infecciosas , Filogenia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Angola/epidemiologia , Sequência de Bases , Feminino , Genoma Viral/genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/sangue , Microcefalia/etiologia , Microcefalia/virologia , Mães , Gravidez , RNA Viral/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
8.
Nat Commun ; 9(1): 2222, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884821

RESUMO

Genetic analyses have provided important insights into Ebola virus spread during the recent West African outbreak, but their implications for specific intervention scenarios remain unclear. Here, we address this issue using a collection of phylodynamic approaches. We show that long-distance dispersal events were not crucial for epidemic expansion and that preventing viral lineage movement to any given administrative area would, in most cases, have had little impact. However, major urban areas were critical in attracting and disseminating the virus: preventing viral lineage movement to all three capitals simultaneously would have contained epidemic size to one-third. We also show that announcements of border closures were followed by a significant but transient effect on international virus dispersal. By quantifying the hypothetical impact of different intervention strategies, as well as the impact of barriers on dispersal frequency, our study illustrates how phylodynamic analyses can help to address specific epidemiological and outbreak control questions.


Assuntos
Surtos de Doenças/prevenção & controle , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , África Ocidental/epidemiologia , Ebolavirus/classificação , Ebolavirus/genética , Genoma Viral/genética , Geografia , Doença pelo Vírus Ebola/transmissão , Humanos , Filogenia , Fatores de Tempo
9.
Mol Biol Evol ; 30(3): 713-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180580

RESUMO

Effective population size is fundamental in population genetics and characterizes genetic diversity. To infer past population dynamics from molecular sequence data, coalescent-based models have been developed for Bayesian nonparametric estimation of effective population size over time. Among the most successful is a Gaussian Markov random field (GMRF) model for a single gene locus. Here, we present a generalization of the GMRF model that allows for the analysis of multilocus sequence data. Using simulated data, we demonstrate the improved performance of our method to recover true population trajectories and the time to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1 CRF02_AG gene sequences sampled from Cameroon. Our results are consistent with HIV prevalence data and uncover some aspects of the population history that go undetected in Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA for a classic ancient DNA data set.


Assuntos
Loci Gênicos , Modelos Genéticos , Algoritmos , Teorema de Bayes , Simulação por Computador , Evolução Molecular , Genes Virais , Especiação Genética , HIV-1/genética , Humanos , Cadeias de Markov , Método de Monte Carlo , Mutação , Densidade Demográfica , Dinâmica Populacional , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA