Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Pharm ; 19(1): 274-286, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34877863

RESUMO

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the ß-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Géis , Pressão Intraocular/efeitos dos fármacos , Timolol/farmacologia , Administração Oftálmica , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Córnea/efeitos dos fármacos , Córnea/metabolismo , Géis/administração & dosagem , Poloxâmero , Álcool de Polivinil , Suínos , Timolol/administração & dosagem
2.
Pharm Dev Technol ; 26(9): 978-988, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387136

RESUMO

To cover the unpleasant taste of amoxicillin (250 mg), maize starch (baby food) and milk chocolate were co-formulated. The raw materials and the final formulations were characterized by means of Dynamic Light Scattering (DLS), Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared (FT-IR) spectroscopy. To evaluate the taste masking two different groups of volunteers were used, according to the Ethical Research Committee of the Aristotle University of Thessaloniki. The optimization of excipients' content in the tablet was determined by experimental design methodology (crossed D-optimal). Due to the matrix complexity, amoxicillin was extracted using liquid extraction and analyzed isocratically by HPLC. The developed chromatographic method was validated (%Recovery 98.7-101.3, %RSD = 1.3, LOD and LOQ 0.15 and 0.45 µg mL-1 respectively) according to the International Conference on Harmonization (ICH) guidelines. The physicochemical properties of the tablets were also examined demonstrating satisfactory quality characteristics (diameter: 15 mm, thickness: 6 mm, hardness <98 Newton, loss of mass <1.0%, disintegration time ∼25min). Additionally, dissolution (%Recovery >90) and in vitro digestion tests (%Recovery >95) were carried out. Stability experiments indicated that amoxicillin is stable in the prepared formulations for at least one year (%Recovery <91).


Assuntos
Amoxicilina/síntese química , Antibacterianos/síntese química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Paladar/efeitos dos fármacos , Administração Oral , Adolescente , Adulto , Amoxicilina/administração & dosagem , Amoxicilina/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Aspartame/administração & dosagem , Aspartame/síntese química , Aspartame/farmacocinética , Criança , Chocolate , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/administração & dosagem , Excipientes/síntese química , Excipientes/farmacocinética , Feminino , Humanos , Masculino , Mastigação/efeitos dos fármacos , Mastigação/fisiologia , Comprimidos , Paladar/fisiologia , Adulto Jovem , Zea mays
3.
Expert Opin Ther Pat ; 31(7): 663-686, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33605825

RESUMO

INTRODUCTION: The current availability of dosage forms designed specifically for children is limited, constituting common practice the use of unlicensed or off-labeled medicines and extemporaneous preparations. Swallowing difficulties and taste aversion are the primary reasons for medicine rejection; therefore, enhancing palatability and ease of administration are the most common approaches adopted to overcome these issues. AREAS COVERED: A search of patents was performed for pediatric dosage forms and devices. The review aims to provide an overview on new formulation approaches and technologies adopted to develop pediatric-friendly dosage forms and devices, as well as on the regulatory efforts aiming to support the pediatrics market. EXPERT OPINION: Children deserve medicines of the same efficacy, quality and safety as adults. The present review highlights the momentum developed by pharmaceutical industries in the field of pediatrics, since more than 60 patents have been published in the last 5 years. An increasing interest, especially in mini-tablets, orodispersible, and chewable dosage forms, as well as on excipients and methods, to achieve sufficient taste-masking was identified, recognizing also the need for coordinated research networks and sustainable collaborations across the public and private sectors to provide better medicines for children.


Assuntos
Química Farmacêutica/métodos , Formas de Dosagem , Tecnologia Farmacêutica/métodos , Administração Oral , Criança , Indústria Farmacêutica/métodos , Excipientes/química , Humanos , Patentes como Assunto , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Paladar
4.
Mater Sci Eng C Mater Biol Appl ; 59: 1053-1062, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652464

RESUMO

In the present study we investigated polymer-lipid microparticles loaded with ropinirole hydrochloride (RH) for nasal delivery. RH microparticles were further evaluated by means of scanning electron microscopy (SEM), ζ-potential measurements, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). In vitro release studies were performed in simulated nasal electrolyte solution (SNES) pH5.5 at 35°C. Ex vivo permeation studies were conducted across sheep nasal mucosa. Cytocompatibility was tested in cultured human airway epithelial cells (Calu-3). SEM studies revealed spheroid microparticles in the range of 2.09µm to 2.41µm. The presence of trimethylchitosan (TMC) induced a slight shift towards less negative ζ-potential values. Surface chemistry (XPS) revealed the presence of dipalmitoylphospatidylcholine (DPPC) and poly(lactic-co-glycolic acid) (PLGA) onto microparticles' surface, further corroborating the FT-IR and XRD findings. In vitro release studies showed that the microparticle composition can partly modulate the release of RH. Ex vivo studies demonstrated a 2.35-folded enhancement of RH permeation when RH was co-formulated with TMC of low molecular weight, compared to the control. All formulations tested were found to be non-toxic to cells. The results suggest that polymer-lipid microparticles may be a promising carrier for the nasal delivery of RH.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Antiparkinsonianos/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Indóis/administração & dosagem , Ácido Láctico/química , Ácido Poliglicólico/química , 1,2-Dipalmitoilfosfatidilcolina/toxicidade , Administração Intranasal , Animais , Antiparkinsonianos/química , Antiparkinsonianos/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/toxicidade , Portadores de Fármacos/toxicidade , Humanos , Indóis/química , Indóis/farmacocinética , Mucosa Nasal/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA