Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Magn Reson Imaging ; 59(5): 1555-1566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37596872

RESUMO

BACKGROUND: Patients with type-2 diabetes (T2DM) are at increased risk of developing diabetic foot ulcers (DFU) and experiencing impaired wound healing related to underlying microvascular disease. PURPOSE: To evaluate the sensitivity of intra-voxel incoherent motion (IVIM) and blood oxygen level dependent (BOLD) MRI to microvascular changes in patients with DFUs. STUDY TYPE: Case-control. POPULATION: 20 volunteers who were age and body mass index matched, including T2DM patients with DFUs (N = 10, mean age = 57.5 years), T2DM patients with controlled glycemia and without DFUs (DC, N = 5, mean age = 57.4 years) and healthy controls (HC, N = 5, mean age = 52.8 years). FIELD STRENGTH/SEQUENCE: 3T/multi-b-value IVIM and dynamic BOLD. ASSESSMENT: Resting IVIM parameters were obtained using a multi-b-value diffusion-weighted imaging sequence and two IVIM models were fit to obtain diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) and microvascular volume fraction (MVF) parameters. Microvascular reactivity was evaluated by inducing an ischemic state in the foot with a blood pressure cuff during dynamic BOLD imaging. Perfusion indices were assessed in two regions of the foot: the medial plantar (MP) and lateral plantar (LP) regions. STATISTICAL TESTS: Effect sizes of group mean differences were assessed using Hedge's g adjusted for small sample sizes. RESULTS: DFU participants exhibited elevated D*, f, and MVF values in both regions (g ≥ 1.10) and increased D (g = 1.07) in the MP region compared to DC participants. DC participants showed reduced f and MVF compared to HC participants in the MP region (g ≥ 1.06). Finally, the DFU group showed reduced tolerance for ischemia in the LP region (g = -1.51) and blunted reperfusion response in both regions (g < -2.32) compared to the DC group during the cuff-occlusion challenge. DATA CONCLUSION: The combined use of IVIM and BOLD MRI shows promise in differentiating perfusion abnormalities in the feet of diabetic patients and suggests hyperperfusion in DFU patients. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Humanos , Pessoa de Meia-Idade , Pé Diabético/diagnóstico por imagem , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Perfusão , Movimento (Física) , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem
2.
Eur Radiol ; 33(5): 3715-3725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928567

RESUMO

OBJECTIVES: Acute ischemic stroke (AIS) is an emergency requiring both fast and informative MR sequences. We aimed to assess the performance of an artificial intelligence-enhanced ultrafast (UF) protocol, compared to the reference protocol, in the AIS management. METHODS: We included patients admitted in the emergency department for suspected AIS. Each patient underwent a 3-T MR protocol, including reference acquisitions of T2-FLAIR, DWI, and SWI (duration: 7 min 54 s) and their accelerated multishot EPI counterparts for T2-FLAIR and T2*, complemented by a single-shot EPI DWI (duration: 1 min 54 s). Two blinded neuroradiologists reviewed each dataset, assessing DWI (detection, location, number of acute lesions), FLAIR (vascular hyperintensities, visibility of acute lesions), and SWI/T2* (hemorrhagic transformation, thrombus). We compared the agreement between the diagnoses obtained with both protocols using kappa coefficients. RESULTS: A total of 173 patients were included consecutively, of whom 80 with an AIS in DWI. We found an almost perfect agreement between the UF and reference protocols regarding the detection, distribution, number of AIS in DWI (κ = 0.98, 0.98, and 0.87 respectively), the presence of vascular hyperintensities, and the presence of a parenchymal hyperintensity in the AIS region in FLAIR (κ = 0.93 and 0.89 respectively). Agreement was substantial in T2*/SWI for thrombus detection, and fair for hemorrhagic transformation detection (κ = 0.64 and 0.38 respectively). Differential diagnoses were similarly detected by both protocols (κ = 1). CONCLUSIONS: Our AI-enhanced ultrafast MRI protocol allowed an effective detection and characterization of both AIS and differential diagnoses in less than 2 min. KEY POINTS: • The AI-enhanced ultrafast MRI protocol allowed an effective detection of acute stroke. • Characterization of stroke features with the UF protocol was equivalent to the reference sequences. • Differential diagnoses were detected similarly by the UF and reference protocols.


Assuntos
Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Imagem Ecoplanar/métodos , AVC Isquêmico/diagnóstico por imagem , Inteligência Artificial , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico , Imagem de Difusão por Ressonância Magnética
3.
NMR Biomed ; 34(7): e4534, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002901

RESUMO

Current clinical MRI evaluation of musculature largely focuses on nonquantitative assessments (including T1-, T2- and PD-weighted images), which may vary greatly between imaging systems and readers. This work aims to determine the efficacy of a quantitative approach to study the microstructure of muscles at the cellular level with the random permeable barrier model (RPBM) applied to time-dependent diffusion tensor imaging (DTI) for varying diffusion time. Patients (N = 15, eight males and seven females) with atrophied calf muscles due to immobilization of one leg in a nonweight-bearing cast, were enrolled after providing informed consent. Their calf muscles were imaged with stimulated echo diffusion for DTI, T1-mapping and RPBM modeling. Specifically, After cast removal, both calf muscles (atrophied and contralateral control leg) were imaged with MRI for all patients, with follow-up scans to monitor recovery of the atrophied leg for six patients after 4 and 8 weeks. We compare RPBM-derived microstructural metrics: myofiber diameter, a, and sarcolemma permeability, κ, along with macroscopic anatomical parameters (muscle cross-sectional area, fiber orientation, <θ>, and T1 relaxation). ROC analysis was used to compare parameters between control and atrophied muscle, while the Friedman test was used to evaluate the atrophied muscle longitudinally. We found that the RPBM framework enables measurement of microstructural parameters from diffusion time-dependent DTI, of which the myofiber diameter is a stronger predictor of intramuscular morphological changes than either macroscopic (anatomical) measurements or empirical diffusion parameters. This work demonstrates the potential of RPBM to assess pathological changes in musculature that seem undetectable with standard diffusion and anatomical MRI.


Assuntos
Imagem de Tensor de Difusão , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/diagnóstico por imagem , Adulto , Anisotropia , Área Sob a Curva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
4.
Magn Reson Med Sci ; 20(2): 227-230, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611990

RESUMO

The microstructural underpinnings of reduced diffusivity in transient splenial lesion remain unclear. Here, we report findings from oscillating gradient spin-echo (OGSE) diffusion imaging in a case of transient splenial lesion. Compared with normal-appearing white matter, the splenial lesion exhibited greater differences between diffusion time t = 6.5 and 35.2 ms, indicating microstructural changes occurring within the corresponding length scale. We also conducted 2D Monte-Carlo simulation. The results suggested that emergence of small and non-exchanging compartment, as often imagined in intramyelinic edema, does not fit well with the in vivo observation. Simulations with axonal swelling and microglial infiltration yielded results closer to the in vivo observations. The present report exemplifies the importance of controlling t for more specific radiological image interpretations.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Baço/diagnóstico por imagem , Baço/patologia , Simulação por Computador , Difusão , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
Eur Radiol ; 28(7): 2882-2889, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29423575

RESUMO

OBJECTIVES: To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. METHODS: Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROItear) in the corresponding healthy contralateral muscle (ROIhc_t) in a healthy area ipsilateral to the injury (ROIhi) and in a corresponding contralateral area (ROIhc_i) were compared. The same comparison was performed for ratios of the injured (ROItear/ROIhi) and contralateral sides (ROIhc_t/ROIhc_i). ANOVA, Bonferroni-corrected post-hoc and Student's t-tests were used. RESULTS: Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROItear showed higher mean diffusivity (MD) and AD than ROIhc_t (p<0.05). Fractional anisotropy (FA) was lower in ROItear than in ROIhi and ROIhc_t (p<0.05). Radial diffusivity (RD) was higher in ROItear than in any other ROI (p<0.05). Ratios revealed higher MD and RD and lower FA and reduced number and length of fibre tracts on the injured side (p<0.05 each). CONCLUSIONS: DTI allowed a robust assessment of muscle tears in athletes especially after normalization to healthy muscle tissue. KEY POINTS: • STEAM-based DTI allows the investigation of muscle tears affecting professional football players. • Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. • Only normalized data show differences of fibre tracking metrics in muscle tears. • The normalization of DTI-metrics enables a more robust characterization of muscle tears.


Assuntos
Futebol Americano/lesões , Músculo Esquelético/lesões , Adulto , Análise de Variância , Anisotropia , Imagem de Tensor de Difusão/métodos , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
6.
Magn Reson Med ; 79(3): 1650-1660, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28656631

RESUMO

PURPOSE: Water exchange exists between different neuronal compartments of brain tissue but is often ignored in most diffusion models. The goal of the current study was to demonstrate the dependence of diffusion measurements on echo time (TE) in the human brain and to investigate the underlying effects of myelin water exchange. METHODS: Five healthy subjects were examined with single-shot pulsed-gradient spin-echo echo-planar imaging with fixed duration (δ) and separation (Δ) of diffusion gradient pulses and a set of varying TEs. The effects of water exchange and intrinsic T2 difference in cellular environments were investigated with Monte Carlo simulations. RESULTS: Both in vivo measurements and simulations showed that fractional anisotropy (FA) and axial diffusivity (AD) had positive correlations with TE, while radial diffusivity (RD) showed a negative correlation, which is consistent with a previous study. The simulation results further indicated the sensitivity of TE dependence to the change of g-ratio. CONCLUSION: The exchange between myelin and intra/extra-axonal water pools often plays a non-negligible role in the observed TE dependence of diffusion parameters, which may accompany or alter the effect of intrinsic T2 in causing such dependence. The TE dependence may potentially serve as a biomarker for demyelination processes (e.g., in multiple sclerosis and Alzheimer's disease). Magn Reson Med 79:1650-1660, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina/química , Água/análise , Adulto , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Feminino , Humanos , Masculino , Método de Monte Carlo , Água/química , Água/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA