Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1389040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957305

RESUMO

Diaphragm dysfunction (DD) can be classified as mild, resulting in diaphragmatic weakness, or severe, resulting in diaphragmatic paralysis. Various factors such as prolonged mechanical ventilation, surgical trauma, and inflammation can cause diaphragmatic injury, leading to negative outcomes for patients, including extended bed rest and increased risk of pulmonary complications. Therefore, it is crucial to protect and monitor diaphragmatic function. Impaired diaphragmatic function directly impacts ventilation, as the diaphragm is the primary muscle involved in inhalation. Even unilateral DD can cause ventilation abnormalities, which in turn lead to impaired gas exchange, this makes weaning from mechanical ventilation challenging and contributes to a higher incidence of ventilator-induced diaphragm dysfunction and prolonged ICU stays. However, there is insufficient research on DD in non-ICU patients, and DD can occur in all phases of the perioperative period. Furthermore, the current literature lacks standardized ultrasound indicators and diagnostic criteria for assessing diaphragmatic dysfunction. As a result, the full potential of diaphragmatic ultrasound parameters in quickly and accurately assessing diaphragmatic function and guiding diagnostic and therapeutic decisions has not been realized.

2.
Environ Res ; 251(Pt 2): 118696, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493860

RESUMO

The accumulation of heavy metals (HMs) in soil caused by mineral resource exploitation and its ancillary industrial processes poses a threat to ecology and public health. Effective risk control measures require a quantification of the impacts and contributions to health risks from individual sources of soil HMs. Based on high-density sampling, soil contamination risk indexes, positive matrix factorization (PMF) model, Monte Carlo simulation and human health risk analysis model were applied to investigate the risk of HMs in a typical mining town in North China. The results showed that As was the most dominant soil pollutant factor, Cd and Hg were the most dominant soil ecological risk factors, and Cr and Ni were the most dominant health risk factors in the study area. Overall, both pollution and ecological risks were at low levels, while there were still some higher hazard areas located in the central and south-central part of the region. According to the probabilistic health risk assessment (HRA), children suffered greater health risks than adults, with 21.63% of non-carcinogenic risks and 53.24% of carcinogenic risks exceeding the prescribed thresholds (HI > 1 and TCR>1E-4). The PMF model identified five potential sources: fuel combustion (FC), processing of building materials with limestone as raw materials (PBML), industry source (IS), iron ore mining combined with garbage (IOG), and agriculture source (AS). PBML is the primary source of soil HM contamination, as well as the major anthropogenic source of carcinogenic risk for all populations. Agricultural inputs associated with As are the major source of non-carcinogenic risk. This study offers a good example of probabilistic HRA using specific sources, which can provide a valuable reference for strategy establishment of pollution remediation and risk prevention and control.


Assuntos
Metais Pesados , Mineração , Método de Monte Carlo , Poluentes do Solo , China , Medição de Risco , Metais Pesados/análise , Poluentes do Solo/análise , Humanos , Adulto , Criança , Monitoramento Ambiental/métodos
3.
Pest Manag Sci ; 78(2): 733-742, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34689404

RESUMO

BACKGROUND: Copper agents have been widely used in crop protection because of their unique mechanism against resistant pathogenic bacteria; however, their application brings environmental pollution and biosafety problems. Therefore, environmentally friendly copper agents have attracted attention. In this study, copper sulfide nanoparticles (CuS NPs) were prepared, characterized, analyzed for antibacterial activity and safety. RESULTS: Characterization results showed that the prepared pure CuS NPs have flake nanostructures, hexagonal crystal system, and size range from 40 to 60 nm. These CuS NPs exerted excellent antibacterial effects [median effective concentration (EC50 ) = 17 mg L-1 ] against Pectobacterium carotovorum subsp. carotovorum (Pcc) in vitro and can effectively delay and reduce bacterial infection in vivo. Antibacterial mechanism analysis revealed that CuS NPs can increase the levels of reactive oxygen species (ROS) and lipid peroxidation and destroy the structure of bacterial cells as observed through scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. These NPs can also inhibit the motility of Pcc. At 7 and 14 days, the 50% lethal concentrations (LC50 ) of CuS NPs against earthworms were 1136 and 783 mg kg-1 , respectively, indicating their low acute toxicity to earthworms and environmental friendliness. Furthermore, the cells (L02) treated by CuS NPs showed relatively high cell viability (> 96%) and low apoptosis rate (only 5.2%), proving that CuS NPs had low cytotoxicity. CONCLUSION: Compared with commercial dicopper chloride trihydroxide (Cu2 (OH)3 Cl), CuS NPs could be used as a highly effective, lowly toxic, and environmentally friendly antibacterial agent. © 2021 Society of Chemical Industry.


Assuntos
Cobre , Pectobacterium , Antibacterianos/farmacologia , Cobre/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA