Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167276, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741384

RESUMO

Passive sampling technology is widely used to evaluate the bioavailability of pollutants. However, relatively few studies have used passive sampling membranes (PSMs) to evaluate the environmental risks of pollutants in soil, particularly pesticides. Here, the bioavailability of difenoconazole to earthworms (Eisenia fetida) was evaluated using an oleic acid-embedded cellulose acetate membrane (OECAM) for the first time. Difenoconazole reached 94 % equilibrium (T94%) within 1 d in OECAM. For soil pore water, the freely dissolved concentration (Cfree) of difenoconazole was determined using OECAM (R2 = 0.969). In the soil system, a strong linear correlation between the difenoconazole concentration in OECAM and earthworms was observed (R2 = 0.913). The bioavailability of difenoconazole was affected by the soil type and biochar content. The higher the content of soil organic matter and biochar, the lower the concentration of difenoconazole in earthworms, OECAM, and soil pore water. The concentrations of difenoconazole in pore water, earthworms, and OECAM decreased by 65.3, 42.0, and 41.6 %, respectively, when 0.5 % biochar was added. Difenoconazole mainly enters OECAM and earthworms through passive diffusion with similar uptake pathways. Therefore, the bioavailability of difenoconazole to earthworms in different soils can be evaluated using the OECAM.


Assuntos
Poluentes Ambientais , Oligoquetos , Poluentes do Solo , Animais , Solo , Oligoquetos/metabolismo , Ácido Oleico/metabolismo , Disponibilidade Biológica , Poluentes do Solo/análise , Poluentes Ambientais/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA