Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 211: 113048, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257686

RESUMO

Tropospheric ozone (O3) is one of the most concernedair pollutants dueto its widespread impacts on land vegetated ecosystems and human health. Ozone is also the third greenhouse gas for radiative forcing. Consequently, it should be carefully and continuously monitored to estimate its potential adverse impacts especially inthose regions where concentrations are high. Continuous large-scale O3 concentrations measurement is crucial but may be unfeasible because of economic and practical limitations; therefore, quantifying the real impact of O3over large areas is currently an open challenge. Thus, one of the final objectives of O3 modelling is to reproduce maps of continuous concentrations (both spatially and temporally) and risk assessment for human and ecosystem health. We here reviewedthe most relevant approaches used for O3 modelling and mapping starting from the simplest geo-statistical approaches andincreasing in complexity up to simulations embedded into the global/regional circulation models and pro and cons of each mode are highlighted. The analysis showed that a simpler approach (mostly statistical models) is suitable for mappingO3concentrationsat the local scale, where enough O3concentration data are available. The associated error in mapping can be reduced by using more complex methodologies, based on co-variables. The models available at the regional or global level are used depending on the needed resolution and the domain where they are applied to. Increasing the resolution corresponds to an increase in the prediction but only up to a certain limit. However, with any approach, the ensemble models should be preferred.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Ecossistema , Humanos , Ozônio/análise , Medição de Risco
2.
Environ Pollut ; 295: 118690, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921939

RESUMO

Surface ozone (O3) is a threat to forests by decreasing photosynthesis and, consequently, influencing the strength of land carbon sink. However, due to the lack of continuous surface O3 measurements, observational-based assessments of O3 impacts on forests are largely missing at hemispheric to global scales. Currently, some metrics are used for regulatory purposes by governments or national agencies to protect forests against the negative impacts of ozone: in particular, both Europe and United States (US) makes use of two different exposure-based metrics, i.e. AOT40 and W126, respectively. However, because of some limitations in these metrics, a new standard is under consideration by the European Union (EU) to replace the current exposure metric. We analyse here the different air quality standards set or proposed for use in Europe and in the US to protect forests from O3 and to evaluate their spatial and temporal consistency while assessing their effectiveness in protecting northern-hemisphere forests. Then, we compare their results with the information obtained from a complex land surface model (ORCHIDEE). We find that present O3 uptake decreases gross primary production (GPP) in 37.7% of the NH forested area of northern hemisphere with a mean loss of 2.4% year-1. We show how the proposed US (W126) and the currently used European (AOT40) air quality standards substantially overestimate the extension of potential vulnerable regions, predicting that 46% and 61% of the Northern Hemisphere (NH) forested area are at risk of O3 pollution. Conversely, the new proposed European standard (POD1) identifies lower extension of vulnerability regions (39.6%).


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Benchmarking , Monitoramento Ambiental , Florestas , Ozônio/análise , Ozônio/toxicidade , Medição de Risco
3.
Sci Total Environ ; 745: 140847, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758759

RESUMO

Ground-level ozone (O3) is the main phytotoxic air pollutant causing crop yield reduction in China. As the main grain producing area in China, the Yangtze River Delta (YRD) is facing serious O3 pollution. This study analyzed the hourly ground-level O3 observation data of 158 stations from 2014 to 2019 in YRD, and grain production data of 193 districts and counties. The exposure-response relationships based on AOT40 (accumulated hourly O3 concentration above 40 ppb) was used to estimate the yield loss and economic loss of two food crops (winter wheat and rice). This study used spatial interpolation and calculated the specific data values of each district and county in order to improve the assessment reliability. For years 2014-2019, averaged O3 concentration during the 75 days growing period of rice and wheat were 33.1-50.6 ppb and 32.2-48.0 ppb, AOT40 value were 5.2-12.0 ppm h and 4.6-9.4 ppm h, and the averaged relative yield losses were 4.9%-11.4% and 9.4%-19.3%, respectively. The trend of O3 in the YRD in a six-year period peaked in 2016 and 2017 for rice and winter wheat, respectively. During 2014-2017, the average estimated yield loss of rice was 2445 Mt. accounting for about 9.1% of the actual production, and the average estimated economic loss was about 1037 million USD; for winter wheat, it was 2025 Mt, 20.4% and 736 million USD, respectively. These results urge governments to provide effective policies and measures to control O3 pollution.

4.
Sci Total Environ ; 722: 137958, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208283

RESUMO

Maize is the second most important crop per harvested area in the world. The North China Plain (NCP) is a highly populated and relevant agricultural region in China, experiencing some of the highest ozone (O3) concentrations worldwide. It produces ~24% of the total maize production of China in years 2014-2017. For these years, we used observational O3 data in combination with geostatistic methods to estimate county-level production and economic losses due to O3 in the NCP. AOT40 (accumulated ozone exposure over an hourly threshold of 40 ppb) values during the maize growing season (90 days before maturity) progressively increased in the four consecutive years: 13.7 ppm h, 15.4 ppm h, 16.9 ppm h and 22.7 ppm h. Mean relative yield losses were 8.2% in 2014, 9.2% in 2015, 10.4% in 2016 and 13.4% in 2017. These yield losses, derived from exposure-response functions, resulted in crop production losses of 530.3 × 104 t, 617.8 × 104 t, 713.8 × 104 t, and 953.4 × 104 t, as well as economic losses of 2343 million USD, 2672 million USD, 1887 million USD, and 2404 million USD from 2014 to 2017. The NCP is a key area in China for monitoring the effectiveness of the clean air action policies aiming at reducing emissions of air pollutants. Despite these measures, O3 concentrations have increased in NCP, and reduction of this pollutant are challenging. We suggest an increase in the number of rural air quality stations for better characterizing O3 trends in cropland areas, as well as the application of different mitigation measures. They may involve more stringent air quality regulations and changes in crops, breeding tolerant cultivars and a crop management taking into account O3 pollution.


Assuntos
Poluição do Ar , Zea mays , Poluentes Atmosféricos , China , Ozônio
5.
Environ Pollut ; 258: 113828, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874438

RESUMO

Tropospheric ozone (O3) is a pollutant of widespread concern in the world and especially in China for its negative effects on agricultural crops. For the first time, yield and economic losses of wheat between 2014 and 2017 were estimated for the North China Plain (NCP) using observational hourly O3 data from 312 monitoring stations and exposure-response functions based on AOT40 index (accumulated hourly O3 concentration above 40 ppb) from a Chinese study. AOT40 values from 2014 to 2017 during the wheat growing seasons (75-days, 44 before and 30 after mid-anthesis) ranged from 3.1 to 14.9 ppm h, 4.9-17.5 ppm h, 7.3-17.6 ppm h, and 0.5-18.6 ppm h, respectively. The highest AOT40 values were observed in the Beijing-Tianjin-Hebei region. The values of relative yield losses from 2014 to 2017 were in the ranges of 6.4-30.5%, 10.0-35.8%, 14.9-34.1%, and 21.6-38.2%, respectively. The total wheat production losses in NCP for 2014-2017 accounted for 18.5%, 22.7%, 26.2% and 30.8% in the whole production, while the economic losses amounted to 6,292 million USD, 8,524 million USD, 10,068 million USD, and 12,404 million USD, respectively. The important impact of O3 in this area, which is of global importance, should be considered when assessing wheat yield production. Our results also show an increasing trend in AOT40, relative yield loss, total crop production loss and economic loss in the four consecutive years.


Assuntos
Agricultura/economia , Poluentes Atmosféricos/análise , Ozônio/análise , Triticum/crescimento & desenvolvimento , Poluentes Atmosféricos/toxicidade , Pequim , China , Produtos Agrícolas/economia , Ozônio/toxicidade
6.
Huan Jing Ke Xue ; 40(10): 4733-4742, 2019 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854845

RESUMO

Chemical fertilizer plays an important role in increasing grain production in agricultural systems but overuse also brings a series of environmental problems, such as eutrophication of surface water, deterioration of soil structure, and the decline of agricultural carrying capacity. At present, research on chemical fertilizer use mainly focuses on utilization efficiency while studies on the spatial characteristics of its use are limited. It is also of great significance for the sustainable development of agriculture in China to fully understand the spatial changes in the use of chemical fertilizers. Based on data of pure chemical fertilizer use, sown area, and grain yield in prefecture-level cities from 2000 to 2015, spatial autocorrelation analysis, cold and hot spot analysis, nuclear density analysis, and standard deviation ellipse analysis were applied. The temporal and spatial variations in total fertilizer use and fertilizer load per unit area in 2000, 2005, 2010, and 2015 were compared. The results showed that:① The use of chemical fertilizer in China increased linearly from 2000 to 2015 but it has been in a relatively high agglomeration state in the region. The pure use of chemical fertilizer experienced a process of increasing regional aggregation from 2000 to 2005, weakening from 2005 to 2010, and increasing from 2010 to 2015. ② From a spatial perspective, the total amount of chemical fertilizer applied between 2000 and 2015 showed an increasing trend, shown by an increase in the number of prefecture-level cities and regions in which the use of chemical fertilizer exceeded the standard. The eastern regions of China, which have experienced rapid economic development, such as Guangdong Province and Fujian Province, are over the critical load of chemical fertilizer more and denser than other prefecture-level cities because the proportional reduction in sown area is greater than the increase in chemical fertilizer use. ③ The movement track of the grain production center in China from 2000 to 2015 was not consistent with the movement track of chemical fertilizer usage. Specifically, the center of grain production moves to the northeast, while the center of chemical fertilizer use moves to the west. This demonstrates that the status of commercial grain production in Northeast China is becoming more and more important, and that the use of chemical fertilizer in the western regions of China is gradually increasing. Here, there is a trend for exceeding the standard, which required further attention.

7.
Environ Int ; 131: 104966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284106

RESUMO

China's economic growth has significantly increased emissions of tropospheric ozone (O3) precursors, resulting in increased regional O3 pollution. We analyzed data from >1400 monitoring stations and estimated the exposure of population and vegetation (crops and forests) to O3 pollution across China in 2015. Based on WHO metrics for human health protection, the current O3 level leads to +0.9% premature mortality (59,844 additional cases a year) with 96% of populated areas showing O3-induced premature death. For vegetation, O3 reduces annual forest tree biomass growth by 11-13% and yield of rice and wheat by 8% and 6%, respectively, relative to conditions below the respective AOT40 critical levels (CL). These CLs are exceeded over 98%, 75% and 83% of the areas of forests, rice and wheat, respectively. Using O3 exposure-response functions, we evaluated the costs of O3-induced losses in rice (7.5 billion US$), wheat (11.1 billion US$) and forest production (52.2 billion US$) and SOMO35-based morbidity for respiratory diseases (690.9 billion US$) and non-accidental mortality (7.5 billion US$), i.e. a total O3-related cost representing 7% of the China Gross Domestic Product in 2015.


Assuntos
Poluentes Atmosféricos/toxicidade , Produtos Agrícolas , Monitoramento Ambiental/métodos , Florestas , Ozônio/toxicidade , Poluentes Atmosféricos/química , China , Poluição Ambiental , Humanos , Ozônio/química
8.
Environ Res ; 176: 108527, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203049

RESUMO

Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Plantas/efeitos dos fármacos , Hormese/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais , Árvores
9.
Elementa (Wash D C) ; 1: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345319

RESUMO

Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA