Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Conserv Biol ; 36(5): e13915, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35384070

RESUMO

Understanding how biodiversity is changing over space and time is crucial for well-informed decisions that help retain Earth's biological heritage over the long term. Tracking changes in biodiversity through ecosystem accounting provides this important information in a systematic way and readily enables linking to other relevant environmental and economic data to provide an integrated perspective. We derived biodiversity accounts for the Murray-Darling Basin, Australia's largest catchment. We assessed biodiversity change from 2010 to 2015 for all vascular plants, all waterbirds, and 10 focal species. We applied a scalable habitat-based assessment approach that combined expected patterns in the distribution of biodiversity from spatial biodiversity models with a time series of spatially complete data on habitat condition derived from remote sensing. Changes in biodiversity from 2010 to 2015 varied across regions and biodiversity features. For the entire Murray-Darling Basin, the expected persistence of vascular plants increased slightly from 2010 to 2015 (from 86.8% to 87.1%), mean species richness of waterbirds decreased slightly (from 12.5 to 12.3 species), whereas for the focal species the estimated area of habitat increased for 8 species and decreased for 1 species. Regions in the north of the Murray-Darling Basin generally had decreases in biodiversity from 2010 to 2015, whereas in the south biodiversity was stable or increased. Our results demonstrate the benefits of habitat-based biodiversity assessments in providing fully scalable biodiversity accounts across different biodiversity features, consistent with the United Nations System of Environmental Economic Accounting - Ecosystem Accounting (SEEA EA) framework.


Evaluación de la Biodiversidad con base en el Hábitat para la Contabilización de Ecosistemas en la Cuenca Murray-Darling Resumen El conocimiento sobre cómo está cambiando la biodiversidad en el tiempo y en el espacio es crucial para las decisiones bien informadas que ayudan a retener la herencia biológica de la Tierra a largo plazo. El seguimiento de cambios en la biodiversidad mediante la contabilidad de los ecosistemas proporciona esta información importante de manera sistémica y permite fácilmente la conexión con otros datos ambientales y económicos relevantes para proporcionar una perspectiva integrada. Derivamos la contabilidad de la biodiversidad para la Cuenca Murray-Darling, la mayor cuenca de Australia. Analizamos los cambios en la biodiversidad entre 2010 y 2015 de todas las plantas vasculares, todas las aves acuáticas y diez especies focales. Aplicamos una estrategia de evaluación basada en el hábitat que combinó los patrones esperados en la distribución de la biodiversidad a partir de modelos espaciales de la biodiversidad con una serie temporal de datos espacialmente completos derivados de la teledetección de la condición del hábitat. Los cambios en la biodiversidad entre 2010 y 2015 variaron entre las regiones y las características de la biodiversidad. Para toda la Cuenca Murray-Darling, la persistencia esperada de las plantas vasculares incrementó ligeramente durante los años de estudio (de 86.8% a 87.1%), la riqueza promedio de especies de aves acuáticas disminuyó un poco (de 12.5 a 12.3 especies), mientras que el área estimada del hábitat de las especies focales incrementó para ocho especies y disminuyó para una. Las regiones al norte de la cuenca tuvieron disminuciones generalizadas de la biodiversidad entre 2010 y 2015, mientras al sur, la biodiversidad se mantuvo estable o incrementó. Nuestros resultados demuestran los beneficios que tienen las evaluaciones de la biodiversidad basadas en el hábitat para proporcionar una contabilidad de la biodiversidad completamente escalable entre las diferentes características de la biodiversidad, acorde con la estructura del Sistema de Contabilidad Económico-Ambiental - Contabilidad de los Ecosistemas (SEEA EA) de las Naciones Unidas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade
2.
Sci Rep ; 11(1): 20249, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642362

RESUMO

Few biodiversity indicators are available that reflect the state of broad-sense biodiversity-rather than of particular taxa-at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries' rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region.


Assuntos
Biodiversidade , Fungos/crescimento & desenvolvimento , Invertebrados/crescimento & desenvolvimento , Vertebrados/crescimento & desenvolvimento , Animais , Efeitos Antropogênicos , Desenvolvimento Econômico , Florestas , Atividades Humanas , Humanos , Modelos Estatísticos , Fenômenos Fisiológicos Vegetais , Densidade Demográfica , Clima Tropical
3.
Conserv Biol ; 35(2): 522-532, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32557845

RESUMO

At the global scale, biodiversity indicators are typically used to monitor general trends, but are rarely implemented with specific purpose or linked directly to decision making. Some indicators are better suited to predicting future change, others are more appropriate for evaluating past actions, but this is seldom made explicit. We developed a conceptual model for assigning biodiversity indicators to appropriate functions based on a common approach used in economics. Using the model, indicators can be classified as leading (indicators that change before the subject of interest, informing preventative actions), coincident (indicators that measure the subject of interest), or lagging (indicators that change after the subject of interest has changed and thus can be used to evaluate past actions). We classified indicators based on ecological theory on biodiversity response times and management objectives in 2 case studies: global species extinction and marine ecosystem collapse. For global species extinctions, indicators of abundance (e.g., the Living Planet Index or biodiversity intactness index) were most likely to respond first, as leading indicators that inform preventative action, while extinction indicators were expected to respond slowly, acting as lagging indicators flagging the need for evaluation. For marine ecosystem collapse, indicators of direct responses to fishing were expected to be leading, while those measuring ecosystem collapse could be lagging. Classification defines an active role for indicators within the policy cycle, creates an explicit link to preventative decision-making, and supports preventative action.


Alineamiento entre los Indicadores de Biodiversidad y los Requerimientos Políticos Resumen En la escala global, los indicadores de biodiversidad se usan comúnmente para monitorear las tendencias generales pero rara vez se implementan con un propósito específico o vinculados directamente con la toma de decisiones. Algunos indicadores son mejores para predecir los cambios futuros, mientras que otros son más apropiados para la evaluación de acciones pasadas, aunque lo anterior casi nunca se comunica explícitamente. Desarrollamos un modelo conceptual para la atribución de indicadores de biodiversidad a funciones apropiadas con base en una estrategia común que se usa en la economía. Con este modelo, los indicadores pueden clasificarse como principales (indicadores que cambian antes que el sujeto de interés, orientando así las acciones preventivas), coincidentes (indicadores que miden al sujeto de interés) o rezagados (indicadores que cambian después de que el sujeto de interés ha cambiado y por lo tanto puede usarse para evaluar las acciones pasadas). Clasificamos los indicadores con base en la teoría ecológica sobre los tiempos de respuesta de la biodiversidad y los objetivos de manejo en dos estudios de caso: la extinción mundial de especies y el colapso de los ecosistemas marinos. Para la extinción mundial de especies, los indicadores de abundancia (p. ej.: el Índice del Planeta Viviente o el índice de biodiversidad intacta) fueron los más probables en tener una respuesta pronta como indicadores principales que orientan las acciones preventivas, mientras que se esperó que los indicadores de extinción tuvieran respuestas lentas, por lo que actuarían como indicadores rezagados que disminuyeron la necesidad de evaluación. Para el colapso de los ecosistemas marinos, se anticipó que los indicadores de las respuestas directas a la pesca fueran los indicadores principales, mientras que aquellos que miden el colapso del ecosistema podrían ser indicadores rezagados. La clasificación define un papel activo para los indicadores dentro del ciclo de políticas, crea un vínculo explícito con la toma de decisiones preventivas y respalda la acción preventiva.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Extinção Biológica , Políticas
4.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
6.
Glob Chang Biol ; 25(8): 2763-2778, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009149

RESUMO

Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, we present a fine-resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species-area relationship, to estimate the effect of land-use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land-use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio-economic development can potentially bring extinction risk back to pre-2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land-use change. In this case, the estimated number of species committed to extinction increases by 3.7-4.5 times compared to land-use-only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land-use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre-industrial times is observed.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais , Previsões , Plantas
8.
Science ; 353(6296): 288-91, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418509

RESUMO

Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Humanos , Dinâmica Populacional , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA