Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 8: 743849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712713

RESUMO

Background: Coronary autoregulation is a feedback system, which maintains near-constant myocardial blood flow over a range of mean arterial pressure (MAP). Yet in emergency or peri-operative situations, hypotensive or hypertensive episodes may quickly arise. It is not yet established how rapid blood pressure changes outside of the autoregulation zone (ARZ) impact left (LV) and right ventricular (RV) function. Using cardiovascular magnetic resonance (CMR) imaging, measurements of myocardial tissue oxygenation and ventricular systolic and diastolic function can comprehensively assess the heart throughout a range of changing blood pressures. Design and methods: In 10 anesthetized swine, MAP was varied in steps of 10-15 mmHg from 29 to 196 mmHg using phenylephrine and urapidil inside a 3-Tesla MRI scanner. At each MAP level, oxygenation-sensitive (OS) cine images along with arterial and coronary sinus blood gas samples were obtained and blood flow was measured from a surgically implanted flow probe on the left anterior descending coronary artery. Using CMR feature tracking-software, LV and RV circumferential systolic and diastolic strain parameters were measured from the myocardial oxygenation cines. Results: LV and RV peak strain are compromised both below the lower limit (LV: Δ1.2 ± 0.4%, RV: Δ4.4 ± 1.2%, p < 0.001) and above the upper limit (LV: Δ2.1 ± 0.4, RV: Δ5.4 ± 1.4, p < 0.001) of the ARZ in comparison to a baseline of 70 mmHg. LV strain demonstrates a non-linear relationship with invasive and non-invasive measures of oxygenation. Specifically for the LV at hypotensive levels below the ARZ, systolic dysfunction is related to myocardial deoxygenation (ß = -0.216, p = 0.036) in OS-CMR and both systolic and diastolic dysfunction are linked to reduced coronary blood flow (peak strain: ß = -0.028, p = 0.047, early diastolic strain rate: ß = 0.026, p = 0.002). These relationships were not observed at hypertensive levels. Conclusion: In an animal model, biventricular function is compromised outside the coronary autoregulatory zone. Dysfunction at pressures below the lower limit is likely caused by insufficient blood flow and tissue deoxygenation. Conversely, hypertension-induced systolic and diastolic dysfunction points to high afterload as a cause. These findings from an experimental model are translatable to the clinical peri-operative environment in which myocardial deformation may have the potential to guide blood pressure management, in particular at varying individual autoregulation thresholds.

2.
Eur J Radiol ; 144: 109958, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571458

RESUMO

PURPOSE: To analyze the predictive value of ΔT1 of the liver and spleen as well as the extracellular volume fraction (ECV) of the spleen as noninvasive biomarkers for the determination of clinically significant portal hypertension (CSPH) on routine Gd-EOB-DTPA liver MRI. METHOD: 195 consecutive patients with known or suspected chronic liver disease from 9/2018 to 7/2019 with Gd-EOB-DTPA liver MRI and abdominal T1 mapping were retrospectively included. Based on the presence of splenomegaly with thrombocytopenia, ascites and portosystemic collaterals, the patients were divided into noCSPH (n = 113), compensated CSPH (cCSPH, ≥1 finding without ascites; n = 55) and decompensated CSPH (dCSPH, ascites ± other findings; n = 27). T1 times were measured in the liver, spleen and abdominal aorta in the unenhanced and contrast-enhanced T1 maps. Native T1 times and ΔT1 of the liver and spleen as well as ECV of the spleen were compared between groups using the Kruskal-Wallis test with Dunn's post hoc test. Furthermore, cutoff values for group differentiation were calculated using ROC analysis with Youden's index. RESULTS: ΔT1 of the liver was significantly lower in patients with cCSPH and dCSPH (p < 0.001) compared to patients with noCSPH. In the ROC analyses for differentiation between noCSPH and CSPH (cCSPH + dCSPH), a cutoff of < 0.67 for ΔT1 of the liver (AUC = 0.79) performed better than ΔT1 (AUC = 0.69) and ECV (AUC = 0.63) of the spleen with cutoffs of > 0.29 and > 41.9, respectively. CONCLUSION: ΔT1 of the liver and spleen in addition to ECV of the spleen allow for determination of CSPH on routine Gd-EOB-DTPA liver MRI.


Assuntos
Hipertensão Portal , Baço , Meios de Contraste , Gadolínio DTPA , Humanos , Hipertensão Portal/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Baço/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA