Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38704250

RESUMO

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Assuntos
Comitês Consultivos , Vacinas Antimaláricas , Organização Mundial da Saúde , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Análise Custo-Benefício , Vacinação/métodos , Malária/prevenção & controle , Imunização/métodos
2.
Lancet Reg Health Eur ; 38: 100829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476752

RESUMO

Background: Two new products for preventing Respiratory Syncytial Virus (RSV) in young children have been licensed: a single-dose long-acting monoclonal antibody (la-mAB) and a maternal vaccine (MV). To facilitate the selection of new RSV intervention programmes for large-scale implementation, this study provides an assessment to compare the costs of potential programmes with the health benefits accrued. Methods: Using an existing dynamic transmission model, we compared maternal vaccination to la-mAB therapy against RSV in England and Wales by calculating the impact and cost-effectiveness. We calibrated a statistical model to the efficacy trial data to accurately capture their immune waning and estimated the impact of seasonal and year-round programmes for la-mAB and MV programmes. Using these impact estimates, we identified the most cost-effective programme across pricing and delivery cost assumptions. Findings: For infants under six months old in England and Wales, a year-round MV programme with 60% coverage would avert 32% (95% CrI 22-41%) of RSV hospital admissions and a year-round la-mAB programme with 90% coverage would avert 57% (95% CrI 41-69%). The MV programme has additional health benefits for pregnant women, which account for 20% of the population-level health burden averted. A seasonal la-mAB programme could be cost-effective for up to £84 for purchasing and administration (CCPA) and a seasonal MV could be cost-effective for up to £80 CCPA. Interpretation: This modelling and cost-effectiveness analysis has shown that both the long-acting monoclonal antibodies and the maternal vaccine could substantially reduce the burden of RSV disease in the infant population. Our analysis has informed JCVI's recommendations for an RSV immunisation programme to protect newborns and infants. Funding: National Institute for Health Research.

3.
BMC Med ; 21(1): 120, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004062

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) causes a substantial burden of acute lower respiratory infection in children under 5 years, particularly in low- and middle-income countries (LMICs). Maternal vaccine (MV) and next-generation monoclonal antibody (mAb) candidates have been shown to reduce RSV disease in infants in phase 3 clinical trials. The cost-effectiveness of these biologics has been estimated using disease burden data from global meta-analyses, but these are sensitive to the detailed age breakdown of paediatric RSV disease, for which there have previously been limited data. METHODS: We use original hospital-based incidence data from South Africa (ZAF) and Kenya (KEN) collected between 2010 and 2018 of RSV-associated acute respiratory infection (ARI), influenza-like illness (ILI), and severe acute respiratory infection (SARI) as well as deaths with monthly age-stratification, supplemented with data on healthcare-seeking behaviour and costs to the healthcare system and households. We estimated the incremental cost per DALY averted (incremental cost-effectiveness ratio or ICER) of public health interventions by MV or mAb for a plausible range of prices (5-50 USD for MV, 10-125 USD for mAb), using an adjusted version of a previously published health economic model of RSV immunisation. RESULTS: Our data show higher disease incidence for infants younger than 6 months of age in the case of Kenya and South Africa than suggested by earlier projections from community incidence-based meta-analyses of LMIC data. Since MV and mAb provide protection for these youngest age groups, this leads to a substantially larger reduction of disease burden and, therefore, more favourable cost-effectiveness of both interventions in both countries. Using the latest efficacy data and inferred coverage levels based on antenatal care (ANC-3) coverage (KEN: 61.7%, ZAF: 75.2%), our median estimate of the reduction in RSV-associated deaths in children under 5 years in Kenya is 10.5% (95% CI: 7.9, 13.3) for MV and 13.5% (10.7, 16.4) for mAb, while in South Africa, it is 27.4% (21.6, 32.3) and 37.9% (32.3, 43.0), respectively. Starting from a dose price of 5 USD, in Kenya, net cost (for the healthcare system) per (undiscounted) DALY averted for MV is 179 (126, 267) USD, rising to 1512 (1166, 2070) USD at 30 USD per dose; for mAb, it is 684 (543, 895) USD at 20 USD per dose and 1496 (1203, 1934) USD at 40 USD per dose. In South Africa, a MV at 5 USD per dose would be net cost-saving for the healthcare system and net cost per DALY averted is still below the ZAF's GDP per capita at 40 USD dose price (median: 2350, 95% CI: 1720, 3346). For mAb in ZAF, net cost per DALY averted is 247 (46, 510) USD at 20 USD per dose, rising to 2028 (1565, 2638) USD at 50 USD per dose and to 6481 (5364, 7959) USD at 125 USD per dose. CONCLUSIONS: Incorporation of new data indicating the disease burden is highly concentrated in the first 6 months of life in two African settings suggests that interventions against RSV disease may be more cost-effective than previously estimated.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Feminino , Criança , Humanos , Gravidez , Pré-Escolar , Análise Custo-Benefício , Anticorpos Monoclonais/uso terapêutico , África do Sul/epidemiologia , Quênia/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinação
4.
BMJ Glob Health ; 7(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914832

RESUMO

BACKGROUND: A few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. METHODS: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (>18 years) population prioritising roll-out in those over 50-years (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at US$7 per dose and vaccine delivery costs of US$3.90-US$6.11 per dose. The cost-effectiveness threshold was US$919.11. FINDINGS: Slow roll-out at 30% coverage largely targets those over 50 years and resulted in 54% fewer deaths (8132 (7914-8373)) than no vaccination and was cost saving (incremental cost-effectiveness ratio, ICER=US$-1343 (US$-1345 to US$-1341) per disability-adjusted life-year, DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757-872) and 5% (282 (251-317) but was not cost-effective, using Kenya's cost-effectiveness threshold (US$919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=US$-1607 (US$-1609 to US$-1604) per DALY averted) compared with slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. INTERPRETATION: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Análise Custo-Benefício , Humanos , Quênia/epidemiologia , SARS-CoV-2 , Adulto Jovem
5.
Lancet Reg Health Eur ; 12: 100267, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34870256

RESUMO

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine supply conditions. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted age-specific compartmental models to the reported daily COVID-19 mortality in 2020 to inform the immunity level before vaccine roll-out. Models capture country-specific differences in population structures, contact patterns, epidemic history, life expectancy, and GDP per capita.We examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incrementally younger age groups. We explored four roll-out scenarios (R1-4) - the slowest scenario (R1) reached 30% coverage by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy, comorbidity- and quality-adjusted life years, and human capital. Six vaccine profiles were tested - the highest performing vaccine has 95% efficacy against both infection and disease, and the lowest 50% against diseases and 0% against infection. FINDINGS: Of the 20 decision-making metrics and roll-out scenario combinations, the same optimal strategy applied to all countries in only one combination; V60 was more or similarly desirable than V75 in 19 combinations. Of the 38 countries with fitted models, 11-37 countries had variable optimal strategies by decision-making metrics or roll-out scenarios. There are greater benefits in prioritising older adults when roll-out is slow and when vaccine profiles are less favourable. INTERPRETATION: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics, and roll-out speeds. A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust.

6.
PLoS Comput Biol ; 17(12): e1009680, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941865

RESUMO

Human immunodeficiency virus (HIV) infected adults are at a higher risk of pneumococcal colonisation and disease, even while receiving antiretroviral therapy (ART). To help evaluate potential indirect effects of vaccination of HIV-infected adults, we assessed whether HIV-infected adults disproportionately contribute to household transmission of pneumococci. We constructed a hidden Markov model to capture the dynamics of pneumococcal carriage acquisition and clearance observed during a longitudinal household-based nasopharyngeal swabbing study, while accounting for sample misclassifications. Households were followed-up twice weekly for approximately 10 months each year during a three-year study period for nasopharyngeal carriage detection via real-time PCR. We estimated the effect of participant's age, HIV status, presence of a HIV-infected adult within the household and other covariates on pneumococcal acquisition and clearance probabilities. Of 1,684 individuals enrolled, 279 (16.6%) were younger children (<5 years-old) of whom 4 (1.5%) were HIV-infected and 726 (43.1%) were adults (≥18 years-old) of whom 214 (30.4%) were HIV-infected, most (173, 81.2%) with high CD4+ count. The observed range of pneumococcal carriage prevalence across visits was substantially higher in younger children (56.9-80.5%) than older children (5-17 years-old) (31.7-50.0%) or adults (11.5-23.5%). We estimate that 14.4% (95% Confidence Interval [CI]: 13.7-15.0) of pneumococcal-negative swabs were false negatives. Daily carriage acquisition probabilities among HIV-uninfected younger children were similar in households with and without HIV-infected adults (hazard ratio: 0.95, 95%CI: 0.91-1.01). Longer average carriage duration (11.4 days, 95%CI: 10.2-12.8 vs 6.0 days, 95%CI: 5.6-6.3) and higher median carriage density (622 genome equivalents per millilitre, 95%CI: 507-714 vs 389, 95%CI: 311.1-435.5) were estimated in HIV-infected vs HIV-uninfected adults. The use of ART and antibiotics substantially reduced carriage duration in all age groups, and acquisition rates increased with household size. Although South African HIV-infected adults on ART have longer carriage duration and density than their HIV-uninfected counterparts, they show similar patterns of pneumococcal acquisition and onward transmission.


Assuntos
Infecções por HIV , Infecções Pneumocócicas , Adolescente , Adulto , Algoritmos , Portador Sadio/epidemiologia , Portador Sadio/transmissão , Criança , Pré-Escolar , Biologia Computacional , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Modelos Estatísticos , Infecções Pneumocócicas/complicações , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/transmissão , África do Sul/epidemiologia , Streptococcus pneumoniae , Adulto Jovem
7.
medRxiv ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34282421

RESUMO

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine roll-out speed. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted country-specific age-stratified compartmental transmission models to reported COVID-19 mortality in the WHO European Region to inform the immunity level before vaccine roll-out. Building upon broad recommendations from the WHO Strategic Advisory Group of Experts on Immunisation (SAGE), we examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incremental expansion to successively younger five-year age groups. We explored four roll-out scenarios based on projections or recent observations (R1-4) - the slowest scenario (R1) covers 30% of the total population by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy (cLE), comorbidity- and quality-adjusted life years (cQALY), and the value of human capital (HC). Six sets of infection-blocking and disease-reducing vaccine efficacies were considered. FINDINGS: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics and roll-out speeds. Overall, V60 consistently performed better than or comparably to V75. There were greater benefits in prioritising older adults when roll-out is slow and when VE is low. Under faster roll-out, V+ was the most desirable option. INTERPRETATION: A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust. RESEARCH IN CONTEXT: Evidence before this study: We searched PubMed and medRxiv for articles published in English from inception to 9 Jun 2021, with the search terms: ("COVID-19" OR "SARS-CoV-2") AND ("priorit*) AND ("model*") AND ("vaccin*") and identified 66 studies on vaccine prioritization strategies. Of the 25 studies that compared two or more age-based prioritisation strategies, 12 found that targeting younger adults minimised infections while targeting older adults minimised mortality; an additional handful of studies found similar outcomes between different age-based prioritisation strategies where large outbreaks had already occurred. However, only two studies have explored age-based vaccine prioritisation using models calibrated to observed outbreaks in more than one country, and no study has explored the effectiveness of vaccine prioritisation strategies across settings with different population structures, contact patterns, and outbreak history.Added-value of this study: We evaluated various age-based vaccine prioritisation strategies for 38 countries in the WHO European Region using various health and economic outcomes for decision-making, by parameterising models using observed outbreak history, known epidemiologic and vaccine characteristics, and a range of realistic vaccine roll-out scenarios. We showed that while targeting older adults was generally advantageous, broadly targeting everyone above 60 years might perform better than or comparably to a more detailed strategy that targeted the oldest age group above 75 years followed by those in the next younger five-year age band. Rapid vaccine roll-out has only been observed in a small number of countries. If vaccine coverage can reach 80% by the end of 2021, prioritising older adults may not be optimal in terms of health and economic impact. Lower vaccine efficacy was associated with greater relative benefits only under relatively slow roll-out scenarios considered.Implication of all the available evidence: COVID-19 vaccine prioritization strategies that require more precise targeting of individuals of a specific and narrow age range may not necessarily lead to better outcomes compared to strategies that prioritise populations across broader age ranges. In the WHO European Region, prioritising all adults equally or younger adults first will only optimise health and economic impact when roll-out is rapid, which may raise between-country equity issues given the global demand for COVID-19 vaccines.

8.
Vaccine ; 39(34): 4759-4765, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253416

RESUMO

Dengue vaccination would enhance the control of dengue, one of the most frequent vector-borne viral diseases globally. CYD-TDV is the first dengue vaccine to be licensed, but global uptake has been hampered due to its use being limited to seropositive persons aged 9 years and above, and the need for a 3-dose schedule. The Partnership for Dengue Control (PDC) organized a meeting with key opinion leaders and stakeholders to deliberate on implementation strategies for the use of CYD-TDV. New data have emerged that support the shortening of the primary schedule from a 3 to 2 dose schedule, extending the age range below 9 to 6 years of age, and expanding the indication from endemic populations to also include travelers to endemic areas. Cost-effectiveness may improve with the modified 2-dose regimen and with multiple testing. Strategies to implement a dengue vaccination program have been developed, in particular school-based strategies. A range of delivery scenarios can then be considered, using various settings for each step of the intervention. However, several challenges remain, including communication about limiting the use of this vaccine to seropositive individuals only. Affordability will vary from country to country, as will government commitment and community acceptance. Well-tailored communication strategies that target key stakeholders are expected to make up a significant part of any future dengue vaccination program.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Anticorpos Antivirais , Análise Custo-Benefício , Dengue/prevenção & controle , Humanos , Vacinas Atenuadas
9.
BMC Med ; 18(1): 324, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050951

RESUMO

BACKGROUND: The health impact of COVID-19 may differ in African settings as compared to countries in Europe or China due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising mortality, protecting health services and safeguarding livelihoods. METHODS: We used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa (from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic people, physical distancing and 'shielding' (physical isolation) of the high-risk population. We adapted model parameters to better represent uncertainty about what might be expected in African populations, in particular by shifting the distribution of severity risk towards younger ages and increasing the case-fatality ratio. We also present sensitivity analyses for key model parameters subject to uncertainty. RESULTS: We predicted median symptomatic attack rates over the first 12 months of 23% (Niger) to 42% (Mauritius), peaking at 2-4 months, if epidemics were unmitigated. Self-isolation while symptomatic had a maximum impact of about 30% on reducing severe cases, while the impact of physical distancing varied widely depending on percent contact reduction and R0. The effect of shielding high-risk people, e.g. by rehousing them in physical isolation, was sensitive mainly to residual contact with low-risk people, and to a lesser extent to contact among shielded individuals. Mitigation strategies incorporating self-isolation of symptomatic individuals, moderate physical distancing and high uptake of shielding reduced predicted peak bed demand and mortality by around 50%. Lockdowns delayed epidemics by about 3 months. Estimates were sensitive to differences in age-specific social mixing patterns, as published in the literature, and assumptions on transmissibility, infectiousness of asymptomatic cases and risk of severe disease or death by age. CONCLUSIONS: In African settings, as elsewhere, current evidence suggests large COVID-19 epidemics are expected. However, African countries have fewer means to suppress transmission and manage cases. We found that self-isolation of symptomatic persons and general physical distancing are unlikely to avert very large epidemics, unless distancing takes the form of stringent lockdown measures. However, both interventions help to mitigate the epidemic. Shielding of high-risk individuals can reduce health service demand and, even more markedly, mortality if it features high uptake and low contact of shielded and unshielded people, with no increase in contact among shielded people. Strategies combining self-isolation, moderate physical distancing and shielding could achieve substantial reductions in mortality in African countries. Temporary lockdowns, where socioeconomically acceptable, can help gain crucial time for planning and expanding health service capacity.


Assuntos
Infecções por Coronavirus/prevenção & controle , Modelos Biológicos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Distribuição por Idade , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Epidemias , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Níger , Nigéria , Distância Psicológica , SARS-CoV-2 , Incerteza , Adulto Jovem
10.
BMC Med ; 17(1): 172, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31495336

RESUMO

BACKGROUND: Wolbachia-infected mosquitoes reduce dengue virus transmission, and city-wide releases in Yogyakarta city, Indonesia, are showing promising entomological results. Accurate estimates of the burden of dengue, its spatial distribution and the potential impact of Wolbachia are critical in guiding funder and government decisions on its future wider use. METHODS: Here, we combine multiple modelling methods for burden estimation to predict national case burden disaggregated by severity and map the distribution of burden across the country using three separate data sources. An ensemble of transmission models then predicts the estimated reduction in dengue transmission following a nationwide roll-out of wMel Wolbachia. RESULTS: We estimate that 7.8 million (95% uncertainty interval [UI] 1.8-17.7 million) symptomatic dengue cases occurred in Indonesia in 2015 and were associated with 332,865 (UI 94,175-754,203) lost disability-adjusted life years (DALYs). The majority of dengue's burden was due to non-severe cases that did not seek treatment or were challenging to diagnose in outpatient settings leading to substantial underreporting. Estimated burden was highly concentrated in a small number of large cities with 90% of dengue cases occurring in 15.3% of land area. Implementing a nationwide Wolbachia population replacement programme was estimated to avert 86.2% (UI 36.2-99.9%) of cases over a long-term average. CONCLUSIONS: These results suggest interventions targeted to the highest burden cities can have a disproportionate impact on dengue burden. Area-wide interventions, such as Wolbachia, that are deployed based on the area covered could protect people more efficiently than individual-based interventions, such as vaccines, in such dense environments.


Assuntos
Aedes/microbiologia , Dengue/prevenção & controle , Modelos Teóricos , Controle Biológico de Vetores/métodos , Wolbachia , Animais , Efeitos Psicossociais da Doença , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue , Humanos , Indonésia/epidemiologia
11.
J R Soc Interface ; 16(157): 20190234, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31431184

RESUMO

The World Health Organization (WHO) currently recommends pre-screening for past infection prior to administration of the only licensed dengue vaccine, CYD-TDV. Using a threshold modelling analysis, we identify settings where this guidance prohibits positive net-benefits, and are thus unfavourable. Generally, however, our model shows test-then-vaccinate strategies can improve CYD-TDV economic viability: effective testing reduces unnecessary vaccination costs while increasing health benefits. With sufficiently low testing cost, those trends outweigh additional screening costs, expanding the range of settings with positive net-benefits. This work highlights two aspects for further analysis of test-then-vaccinate strategies. We found that starting routine testing at younger ages could increase benefits; if real tests are shown to sufficiently address safety concerns, the manufacturer, regulators and WHO should revisit guidance restricting use to 9-years-and-older recipients. We also found that repeat testing could improve return-on-investment (ROI), despite increasing intervention costs. Thus, more detailed analyses should address questions on repeat testing and testing periodicity, in addition to real test sensitivity and specificity. Our results follow from a mathematical model relating ROI to epidemiology, intervention strategy, and costs for testing, vaccination and dengue infections. We applied this model to a range of strategies, costs and epidemiological settings pertinent to CYD-TDV. However, general trends may not apply locally, so we provide our model and analyses as an R package available via CRAN, denvax. To apply to their setting, decision-makers need only local estimates of age-specific seroprevalence and costs for secondary infections.


Assuntos
Análise Custo-Benefício , Vacinas contra Dengue/economia , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Envelhecimento , Animais , Criança , Humanos , Modelos Biológicos , Testes Sorológicos , Vacinação
12.
BMC Med ; 17(1): 163, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31422772

RESUMO

BACKGROUND: Despite the increasing popularity of multi-model comparison studies and their ability to inform policy recommendations, clear guidance on how to conduct multi-model comparisons is not available. Herein, we present guidelines to provide a structured approach to comparisons of multiple models of interventions against infectious diseases. The primary target audience for these guidelines are researchers carrying out model comparison studies and policy-makers using model comparison studies to inform policy decisions. METHODS: The consensus process used for the development of the guidelines included a systematic review of existing model comparison studies on effectiveness and cost-effectiveness of vaccination, a 2-day meeting and guideline development workshop during which mathematical modellers from different disease areas critically discussed and debated the guideline content and wording, and several rounds of comments on sequential versions of the guidelines by all authors. RESULTS: The guidelines provide principles for multi-model comparisons, with specific practice statements on what modellers should do for six domains. The guidelines provide explanation and elaboration of the principles and practice statements as well as some examples to illustrate these. The principles are (1) the policy and research question - the model comparison should address a relevant, clearly defined policy question; (2) model identification and selection - the identification and selection of models for inclusion in the model comparison should be transparent and minimise selection bias; (3) harmonisation - standardisation of input data and outputs should be determined by the research question and value of the effort needed for this step; (4) exploring variability - between- and within-model variability and uncertainty should be explored; (5) presenting and pooling results - results should be presented in an appropriate way to support decision-making; and (6) interpretation - results should be interpreted to inform the policy question. CONCLUSION: These guidelines should help researchers plan, conduct and report model comparisons of infectious diseases and related interventions in a systematic and structured manner for the purpose of supporting health policy decisions. Adherence to these guidelines will contribute to greater consistency and objectivity in the approach and methods used in multi-model comparisons, and as such improve the quality of modelled evidence for policy.


Assuntos
Doenças Transmissíveis/terapia , Política de Saúde , Modelos Teóricos , Análise Custo-Benefício , Tomada de Decisões , Humanos
13.
BMC Med ; 17(1): 129, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31272431

RESUMO

BACKGROUND: Every year, 90,000 people may die from melioidosis. Vaccine candidates have not proceeded past animal studies, partly due to uncertainty around the potential market size. This study aims to estimate the potential impact, cost-effectiveness and market size for melioidosis vaccines. METHODS: Age-structured decision tree models with country-specific inputs were used to estimate net costs and health benefits of vaccination, with health measured in quality-adjusted life years (QALYs). Four target groups of people living in endemic regions were considered: (i) people aged over 45 years with chronic renal disease, (ii) people aged over 45 years with diabetes, (iii) people aged over 45 years with diabetes and/or chronic renal disease, (iv) everyone aged over 45 years. Melioidosis risk was estimated using Bayesian evidence synthesis of 12 observational studies. In the base case, vaccines were assumed to have 80% efficacy, to have 5-year mean protective duration and to cost USD10.20-338.20 per vaccine. RESULTS: Vaccination could be cost-effective (with incremental cost-effectiveness ratio below GDP per capita) in 61/83 countries/territories with local melioidosis transmission. In these 61 countries/territories, vaccination could avert 68,000 lost QALYs, 8300 cases and 4400 deaths per vaccinated age cohort, at an incremental cost of USD59.6 million. Strategy (ii) was optimal in most regions. The vaccine market may be worth USD268 million per year at its threshold cost-effective price in each country/territory. CONCLUSIONS: There is a viable melioidosis vaccine market, with cost-effective vaccine strategies in most countries/territories with local transmission.


Assuntos
Melioidose/tratamento farmacológico , Vacinação/economia , Análise Custo-Benefício , Feminino , Humanos , Masculino , Melioidose/patologia , Pessoa de Meia-Idade
14.
Lancet Glob Health ; 7(5): e644-e654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31000132

RESUMO

BACKGROUND: In 2009, Gavi, the World Bank, and donors launched the pneumococcal Advance Market Commitment, which helped countries access more affordable pneumococcal vaccines. As many low-income countries begin to reach the threshold at which countries transition from Gavi support to self-financing (3-year average gross national income per capita of US$1580), they will need to consider whether to continue pneumococcal conjugate vaccine (PCV) use at full cost or to discontinue PCV in their childhood immunisation programmes. Using Kenya as a case study, we assessed the incremental cost-effectiveness of continuing PCV use. METHODS: In this modelling and cost-effectiveness study, we fitted a dynamic compartmental model of pneumococcal carriage to annual carriage prevalence surveys and invasive pneumococcal disease (IPD) incidence in Kilifi, Kenya. We predicted disease incidence and related mortality for either continuing PCV use beyond 2022, the start of Kenya's transition from Gavi support, or its discontinuation. We calculated the costs per disability-adjusted life-year (DALY) averted and associated 95% prediction intervals (PI). FINDINGS: We predicted that if PCV use is discontinued in Kenya in 2022, overall IPD incidence will increase from 8·5 per 100 000 in 2022, to 16·2 per 100 000 per year in 2032. Continuing vaccination would prevent 14 329 (95% PI 6130-25 256) deaths and 101 513 (4386-196 674) disease cases during that time. Continuing PCV after 2022 will require an estimated additional US$15·8 million annually compared with discontinuing vaccination. We predicted that the incremental cost per DALY averted of continuing PCV would be $153 (95% PI 70-411) in 2032. INTERPRETATION: Continuing PCV use is essential to sustain its health gains. Based on the Kenyan GDP per capita of $1445, and in comparison to other vaccines, continued PCV use at full costs is cost-effective (on the basis of the assumption that any reduction in disease will translate to a reduction in mortality). Although affordability is likely to be a concern, our findings support an expansion of the vaccine budget in Kenya. FUNDING: Wellcome Trust and Gavi, the Vaccine Alliance.


Assuntos
Programas de Imunização/economia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêutico , Pré-Escolar , Análise Custo-Benefício , Custos de Cuidados de Saúde , Financiamento da Assistência à Saúde , Humanos , Programas de Imunização/métodos , Programas de Imunização/organização & administração , Cooperação Internacional , Quênia/epidemiologia , Modelos Econômicos , Infecções Pneumocócicas/economia , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas/economia , Anos de Vida Ajustados por Qualidade de Vida
15.
Lancet Glob Health ; 7(1): e58-e67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30554762

RESUMO

BACKGROUND: Introduction of pneumococcal conjugate vaccines (PCVs) has substantially reduced disease burden due to Streptococcus pneumoniae, a leading cause of childhood morbidity and mortality globally. However, PCVs are among the most expensive vaccines, hindering their introduction in some settings and threatening sustainability in others. We aimed to assess the effect and cost-effectiveness of introduction of 13-valent PCV (PCV13) vaccination globally. METHODS: We assessed the incremental cost-effectiveness ratio of PCV13 introduction by integrating two models: an ecological model (a parsimonious, mechanistic model validated with data from post-seven-valent PCV introduction in 13 high-income settings) to predict the effect of PCV on childhood invasive pneumococcal disease, and a decision-tree model to predict a range of clinical presentations and economic outcomes under vaccination and no-vaccination strategies. The models followed 30 birth cohorts up to age 5 years in 180 countries from 2015 to 2045. One-way scenario and probabilistic sensitivity analyses were done to explore model uncertainties. FINDINGS: We estimate that global PCV13 use could prevent 0·399 million child deaths (95% credible interval 0·208 million to 0·711 million) and 54·6 million disease episodes (51·8 million to 58·1 million) annually. Global vaccine costs (in 2015 international dollars) of $15·5 billion could be partially offset by health-care savings of $3·19 billion (2·62 billion to 3·92 billion) and societal cost savings of $2·64 billion (2·13 billion to 3·28 billion). PCV13 use is probably cost-effective in all six UN regions. The 71 countries eligible for support from Gavi, the Vaccine Alliance, account for 83% of PCV13-preventable deaths but only 18% of global vaccination costs. The expected cost of PCV vaccination globally is around $16 billion per year. INTERPRETATION: Our findings highlight the value of Gavi's support for PCV introduction in low-income countries and of efforts to improve the affordability of PCVs in countries not eligible for, or transitioning from, Gavi support. FUNDING: World Health Organization; Gavi, the Vaccine Alliance; and the Bill & Melinda Gates Foundation.


Assuntos
Saúde Global/economia , Saúde Global/estatística & dados numéricos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/economia , Mortalidade da Criança/tendências , Pré-Escolar , Análise Custo-Benefício , Humanos , Lactente , Modelos Teóricos , Vacinas Conjugadas
16.
Hum Vaccin Immunother ; 14(8): 1939-1947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29781740

RESUMO

Although catch-up campaigns (CCs) at the introduction of pneumococcal conjugate vaccines (PCVs) may accelerate their impact, supply constraints may limit their benefit if the need for additional PCV doses results in introduction delay. We studied the impact of PCV13 introduction with and without CC in Nha Trang, Vietnam - a country that has not yet introduced PCV - through a dynamic transmission model. We modelled the impact on carriage and invasive pneumococcal disease (IPD) of routine vaccination (RV) only and that of RV with CCs targeting <1y olds (CC1), <2y olds (CC2) and <5y olds (CC5). The model was fitted to nasopharyngeal carriage data, and post-PCV predictions were based on best estimates of parameters governing post-PCV dynamics. With RV only, elimination in carriage of vaccine-type (VT) serotypes is predicted to occur across all age groups within 10 years after introduction, with near-complete replacement by non-VT. Most of the benefit of CCs is predicted to occur within the first 3 years with the highest impact at one year, when IPD incidence is predicted to be 11% (95%CrI 9 - 14%) lower than RV with CC1, 25% (21 - 30 %) lower with CC2 and 38% (32 - 46%) lower with CC5. However, CCs would only prevent more cases of IPD insofar as such campaigns do not delay introduction by more than about 6, 12 and 18 months for CC1, CC2 and CC5. Those findings are important to help guide vaccine introduction in countries that have not yet introduced PCV, particularly in Asia.


Assuntos
Portador Sadio/epidemiologia , Modelos Biológicos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/isolamento & purificação , Adolescente , Adulto , Portador Sadio/microbiologia , Portador Sadio/terapia , Portador Sadio/transmissão , Criança , Pré-Escolar , Humanos , Incidência , Lactente , Recém-Nascido , Cadeias de Markov , Vacinação em Massa/métodos , Nasofaringe/microbiologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , Prevalência , Sorogrupo , Streptococcus pneumoniae/genética , Resultado do Tratamento , Vacinas Conjugadas/administração & dosagem , Vietnã/epidemiologia , Adulto Jovem
17.
BMC Med ; 15(1): 113, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592303

RESUMO

BACKGROUND: The World Health Organisation recommends the use of catch-up campaigns as part of the introduction of pneumococcal conjugate vaccines (PCVs) to accelerate herd protection and hence PCV impact. The value of a catch-up campaign is a trade-off between the costs of vaccinating additional age groups and the benefit of additional direct and indirect protection. There is a paucity of observational data, particularly from low- and middle-income countries, to quantify the optimal breadth of such catch-up campaigns. METHODS: In Kilifi, Kenya, PCV10 was introduced in 2011 using the three-dose Expanded Programme on Immunisation infant schedule and a catch-up campaign in children <5 years old. We fitted a transmission dynamic model to detailed local data, including nasopharyngeal carriage and invasive pneumococcal disease (IPD), to infer the marginal impact of the PCV catch-up campaign over hypothetical routine cohort vaccination in that setting and to estimate the likely impact of alternative campaigns and their dose efficiency. RESULTS: We estimated that, within 10 years of introduction, the catch-up campaign among children <5 years old prevents an additional 65 (48-84) IPD cases across age groups, compared to PCV cohort introduction alone. Vaccination without any catch-up campaign prevented 155 (121-193) IPD cases and used 1321 (1058-1698) PCV doses per IPD case prevented. In the years after implementation, the PCV programme gradually accrues herd protection, and hence its dose efficiency increases: 10 years after the start of cohort vaccination alone the programme used 910 (732-1184) doses per IPD case averted. We estimated that a two-dose catch-up among children <1 year old uses an additional 910 (732-1184) doses per additional IPD case averted. Furthermore, by extending a single-dose catch-up campaign to children aged 1 to <2 years and subsequently to those aged 2 to <5 years, the campaign uses an additional 412 (296-606) and 543 (403-763) doses per additional IPD case averted. These results were not sensitive to vaccine coverage, serotype competition, the duration of vaccine protection or the relative protection of infants. CONCLUSIONS: We find that catch-up campaigns are a highly dose-efficient way to accelerate population protection against pneumococcal disease.


Assuntos
Programas de Imunização , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Adolescente , Adulto , Criança , Pré-Escolar , Análise Custo-Benefício , Custos e Análise de Custo , Humanos , Programas de Imunização/economia , Lactente , Quênia , Modelos Imunológicos , Vacinas Conjugadas/administração & dosagem , Organização Mundial da Saúde , Adulto Jovem
18.
PLoS Med ; 13(11): e1002181, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898668

RESUMO

BACKGROUND: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. METHODS AND FINDINGS: The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively. The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines. CONCLUSIONS: Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.


Assuntos
Vacinas contra Dengue/economia , Vacinas contra Dengue/normas , Modelos Teóricos , Saúde Pública , Segurança , Vacinação/métodos , Criança , Análise Custo-Benefício , Vacinas contra Dengue/efeitos adversos , Humanos , Estudos Soroepidemiológicos , Vacinação/efeitos adversos , Vacinação/economia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/economia , Vacinas Atenuadas/normas , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/economia , Vacinas Sintéticas/normas
19.
Lancet ; 387(10016): 367-375, 2016 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-26549466

RESUMO

BACKGROUND: The phase 3 trial of the RTS,S/AS01 malaria vaccine candidate showed modest efficacy of the vaccine against Plasmodium falciparum malaria, but was not powered to assess mortality endpoints. Impact projections and cost-effectiveness estimates for longer timeframes than the trial follow-up and across a range of settings are needed to inform policy recommendations. We aimed to assess the public health impact and cost-effectiveness of routine use of the RTS,S/AS01 vaccine in African settings. METHODS: We compared four malaria transmission models and their predictions to assess vaccine cost-effectiveness and impact. We used trial data for follow-up of 32 months or longer to parameterise vaccine protection in the group aged 5-17 months. Estimates of cases, deaths, and disability-adjusted life-years (DALYs) averted were calculated over a 15 year time horizon for a range of levels of Plasmodium falciparum parasite prevalence in 2-10 year olds (PfPR2-10; range 3-65%). We considered two vaccine schedules: three doses at ages 6, 7·5, and 9 months (three-dose schedule, 90% coverage) and including a fourth dose at age 27 months (four-dose schedule, 72% coverage). We estimated cost-effectiveness in the presence of existing malaria interventions for vaccine prices of US$2-10 per dose. FINDINGS: In regions with a PfPR2-10 of 10-65%, RTS,S/AS01 is predicted to avert a median of 93,940 (range 20,490-126,540) clinical cases and 394 (127-708) deaths for the three-dose schedule, or 116,480 (31,450-160,410) clinical cases and 484 (189-859) deaths for the four-dose schedule, per 100,000 fully vaccinated children. A positive impact is also predicted at a PfPR2-10 of 5-10%, but there is little impact at a prevalence of lower than 3%. At $5 per dose and a PfPR2-10 of 10-65%, we estimated a median incremental cost-effectiveness ratio compared with current interventions of $30 (range 18-211) per clinical case averted and $80 (44-279) per DALY averted for the three-dose schedule, and of $25 (16-222) and $87 (48-244), respectively, for the four-dose schedule. Higher ICERs were estimated at low PfPR2-10 levels. INTERPRETATION: We predict a significant public health impact and high cost-effectiveness of the RTS,S/AS01 vaccine across a wide range of settings. Decisions about implementation will need to consider levels of malaria burden, the cost-effectiveness and coverage of other malaria interventions, health priorities, financing, and the capacity of the health system to deliver the vaccine. FUNDING: PATH Malaria Vaccine Initiative; Bill & Melinda Gates Foundation; Global Good Fund; Medical Research Council; UK Department for International Development; GAVI, the Vaccine Alliance; WHO.


Assuntos
Vacinas Antimaláricas/economia , Malária Falciparum/prevenção & controle , Modelos Teóricos , Saúde Pública , África/epidemiologia , Ensaios Clínicos Fase III como Assunto , Análise Custo-Benefício , Humanos , Esquemas de Imunização , Lactente , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/economia , Malária Falciparum/epidemiologia , Estudos Multicêntricos como Assunto
20.
BMC Med ; 13: 236, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26459265

RESUMO

BACKGROUND: The present study aims to evaluate the cost-effectiveness of extending the pre-2013 influenza immunisation programme for high-risk and elderly individuals to those at low risk of developing complications following infection with seasonal influenza. METHODS: We performed an economic evaluation comparing different extensions of the pre-2013 influenza programme to seven possible age groups of low-risk individuals (aged 2-4 years, 50-64 years, 5-16 years, 2-4 and 50-64 years, 2-16 years, 2-16 and 50-64 years, and 2-64 years). These extensions are evaluated incrementally on four base scenarios (no vaccination, risk group only with coverage as observed between 1995 and 2009, risk group and 65+, and risk group with 75% coverage and 65+). Impact of vaccination is assessed using a transmission model built and parameterised from a previously published study. The study population is all individuals of all ages in England and Wales representing an average total of 52.6 million people over 14 influenza seasons (1995-2009). RESULTS: The influenza programme (risk group and elderly) prior to 2013 is likely to be cost effective (incremental cost effectiveness ratio: 7,475 £/QALY, net benefit: 253 M£ [15-829]). Extension to any one of the low-risk target groups defined earlier is likely to be cost-effective. However, strategies that do not include vaccination of school-aged children are less likely to be cost-effective. The most efficient strategy is extension to the 5-16 year age group while universal vaccination (extension to all low-risk individuals over 2 years) will achieve the highest net benefit. While extension to the 2-16 year age group is likely to be very cost effective, the cost-effectiveness of extensions beyond 2-16 years is very uncertain. Extension to the 5-16 year age group would likely remain cost-effective even without herd immunity effects to other age groups. As our study includes a strong historical component, our results depend on the efficacy of the influenza vaccine remaining at levels similar to the ones achieved in the past over a long-period of time (assumed to vary between 28% and 70% depending of the circulating strains and age groups). CONCLUSIONS: Making use of surveillance data from over a decade in conjunction with a dynamic model, we find that vaccination of children in the United Kingdom is likely to be highly cost-effective, not only for their own benefit but also to reduce the disease burden in the rest of the community.


Assuntos
Programas de Imunização/economia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação/economia , Adolescente , Adulto , Criança , Pré-Escolar , Análise Custo-Benefício , Inglaterra , Humanos , Pessoa de Meia-Idade , Qualidade de Vida , Fatores de Risco , Estações do Ano , País de Gales , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA