Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acad Radiol ; 29(5): 689-697, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34389259

RESUMO

RATIONALE AND OBJECTIVES: To determine quantitative and qualitative image quality of contrast-enhanced abdominal photon-counting detector CT (PCD-CT) compared to energy-integrating detector CT (EID-CT) in the same patients. MATERIAL AND METHODS: Thirty-nine patients (mean age 63 ± 10 years, 10 females, mean BMI 26.0 ± 5.7 kg/m2) were retrospectively included who underwent clinically indicated, contrast-enhanced abdominal CT in portal-venous phase with first-generation dual-source PCD-CT and who underwent previous abdominal CT with EID-CT. For both scan, same contrast media protocol was used. PCD-CT was performed in QuantumPlus mode (obtaining full spectral information) at 120kVp. EID-CT was performed using automated tube voltage selection (reference tube voltage 100kVp). In PCD-CT, virtual monoenergetic images (VMI) were reconstructed in 10keV intervals (40-90 keV). Tube current-time product in PCD-CT was modified in each patient to obtain same volume CT-dose-index (CTDIvol) as with EID-CT. Attenuation of organs and vascular structures were measured, noise quantified, and contrast-to-noise ratio (CNR) calculated. Two independent, blinded radiologists assessed subjective image quality using a 5-point Likert scale (overall image quality, image noise, contrast, and liver lesion conspicuity). RESULTS: Median time interval between the scan was 12 months. BMI (p = 0.905) and CTDIvol (p = 0.984) were similar between scans. CNRparenchymal and CNRvascular of VMI from PCD-CT at 40 and 50keV were significantly higher than EID-CT (all, p < 0.05). Overall, inter-reader agreement for all subjective image quality readings was substantial (Krippendorff's alpha = 0.773). Overall image quality of VMI was rated similar at 50 and 60 keV compared to EID-CT (all, p > 0.05). Subjective image noise was significantly higher at 40-50 keV, contrast significantly higher at 40-60 keV (all, p < 0.05). Lesion conspicuity was rated similar on all images. CONCLUSION: Our intra-individual analysis of abdominal PCD-CT indicates that VMI at 50 keV shows significantly higher CNR at similar subjective image quality as compared to EID-CT at identical radiation dose.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
2.
Invest Radiol ; 56(10): 614-620, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787538

RESUMO

PURPOSE: The aim of this study was to assess the accuracy and impact of different sizes and tube voltages on bone mineral density (BMD) assessment using a computed tomography (CT) topogram acquired with photon-counting detector CT in an osteopenic ex vivo animal spine. MATERIALS AND METHODS: The lumbar back of a piglet was used to simulate osteopenia of the lumbar spine. Five fat layers (each with a thickness of 3 cm) were consecutively placed on top of the excised spine to emulate a total of 5 different sizes. Each size was repeatedly imaged on (A) a conventional dual-energy x-ray absorptiometry scanner as the reference standard, (B) a prototype photon-counting detector CT system at 120 kVp with energy thresholds at 20 and 70 keV, and (C) the same prototype system at 140 kVp with thresholds at 20 and 75 keV. Material-specific data were reconstructed from spectral topograms for B and C. Bone mineral density was measured for 3 lumbar vertebrae (L2-L4). A linear mixed-effects model was used to estimate the impact of vertebra, imaging setup, size, and their interaction term on BMD. RESULTS: The BMD of the lumbar spine corresponded to a T score in humans between -4.2 and -4.8, which is seen in osteoporosis. Averaged across the 3 vertebrae and 5 sizes, mean BMD was 0.56 ± 0.03, 0.55 ± 0.02, and 0.55 ± 0.02 g/cm2 for setup A, B, and C, respectively. There was no significant influence of imaging setup (P = 0.7), simulated size (P = 0.67), and their interaction term (both P > 0.2) on BMD. Bone mineral density decreased significantly from L2 to L4 for all 3 setups (all P < 0.0001). Bone mineral density was 0.59 ± 0.01, 0.57 ± 0.01, and 0.52 ± 0.02 g/cm2 for L2, L3, and L4, respectively, for setup A; 0.57 ± 0.02, 0.55 ± 0.01, and 0.53 ± 0.01 g/cm2 for setup B; and 0.57 ± 0.01, 0.55 ± 0.01, and 0.53 ± 0.01 g/cm2 for setup C. CONCLUSION: A single CT topogram acquired on photon-counting detector CT with 2 energy thresholds enabled BMD quantification with similar accuracy compared with dual-energy x-ray absorptiometry over a range of simulated sizes and tube voltages in an osteopenic ex vivo animal spine.


Assuntos
Densidade Óssea , Osteoporose , Absorciometria de Fóton , Animais , Humanos , Vértebras Lombares/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X
3.
Radiol Clin North Am ; 53(2): 271-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25726993

RESUMO

While coronary computed tomography (CT) angiography and more refined imaging of the coronary anatomy have driven technical innovation in cardiac CT for the last 10 years, there is now an increasing focus on functional applications of cardiac CT, such as evaluation of the myocardial blood supply or assessment of dynamic myocardial perfusion. Novel techniques show promising results. This article focuses on state-of-the-art CT imaging techniques to visualize the coronary anatomy, describes aspects of radiation dose reduction, and briefly touches on recent approaches to obtain functional information from a CT scan of the heart, in particular dual-energy CT.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Eletrocardiografia , Humanos , Tomografia Computadorizada Espiral/métodos
4.
Invest Radiol ; 50(2): 114-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25373305

RESUMO

INTRODUCTION: One method to acquire dual-energy (DE) computed tomography (CT) data is to perform CT scans at 2 different x-ray tube voltages, typically 80 and 140 kV, either as 2 separate scans, by means of rapid kV switching, or with the use of 2 x-ray sources as in dual-source CT (DSCT) systems. In DSCT, it is possible to improve spectral separation with tin prefiltration (Sn) of the high-kV beam. Recently, x-ray tube voltages beyond the established range of 80 to 140 kV were commercially introduced, which enable additional voltage combinations for DE acquisitions, such as 80/150 Sn or 90/150 Sn kV. Here, we investigate the DE performance of several x-ray tube voltages and prefilter combinations on 2 DSCT scanners and the impact of the spectra on quantitative analysis and dose efficiency. MATERIALS AND METHODS: Circular phantoms of different sizes (10-40 cm in diameter) equipped with cylindrical inserts containing water and diluted iodine contrast agent (14.5 mg/cm) were scanned using 2 different DSCT systems (SOMATOM Definition Flash and SOMATOM Force; Siemens AG, Forchheim, Germany). Five x-ray tube voltage combinations (80/140 Sn, 100/140 Sn, 80/150 Sn, 90/150 Sn, and 100/150 Sn kV) were investigated, and the results were compared with the previous standard acquisition technique (80/140 kV). As an example, 80/140 Sn kV means that 1 x-ray tube of the DSCT system was operated at 80 kV, whereas the other was operated at 140 kV with additional tin prefiltration (Sn). Dose values in terms of computed tomography dose index (CTDIvol) were kept constant between the different voltage combinations but adjusted with regard to object size according to automatic exposure control recommendations. Reconstructed images were processed using linear blending of the low- and high-kV CT images to combined images, as well as 3-material decomposition techniques to generate virtual noncontrast (VNC) images and iodine images. Contrast and pixel noise were evaluated, as well as DE ratios, which are defined as the CT value at low kV divided by the CT value at high kV. RESULTS: For the 10-, 20-, 30-, and 40-cm phantom, dose values in terms of CTDIvol were 1.2, 2.6, 7.3, and 21.6 mGy, respectively. In the combined images, those obtained with tin filtration showed lower noise values at similar iodine enhancement levels than did images obtained without tin filtration. The largest differences in noise were observed for the larger phantoms, in particular the 40-cm phantom. Dual-energy ratios for iodine increased with decreasing voltages of the low-kV beam and with increasing voltages of the high-kV beam, and they increased when tin prefiltration was added. In case of the 20-cm phantom, DE ratios ranged from 2.0 at 80/140 kV to 3.4 at 80/150 Sn kV. The noise level of the VNC images was strongly correlated with the inverse of the DE ratio. Irrespective of the phantom size, the lowest noise values were measured for 80/150 Sn kV. DISCUSSION: Dual-source CT systems enable DE data to be acquired using a variety of voltage combinations. Combined (or mixed) DE images provide an image impression similar to standard 120 kV images, yet the noise level depends on the DE voltage combination that is selected. Noise in decomposed VNC images is strongly influenced by the DE ratio, and it improves substantially with tin filtration of the high-voltage beam.


Assuntos
Doses de Radiação , Proteção Radiológica/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Invest Radiol ; 49(9): 586-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24710203

RESUMO

INTRODUCTION: Following the trend of low-radiation dose computed tomographic (CT) imaging, concerns regarding the detectability of low-contrast lesions have been growing. The goal of this research was to evaluate whether a new image-based algorithm (Mono+) for virtual monoenergetic imaging with a dual-energy CT scanner can improve the contrast-to-noise ratio (CNR) and conspicuity of these low-contrast objects when using iodinated contrast media. MATERIALS AND METHODS: Four circular phantoms of different diameter (10-40 cm) with an iodine insert at the center were scanned at a fixed radiation dose with different single- (80, 100, 120 kV) and dual-energy protocols (80/140 kV, 80/140 Sn kV, 100/140 Sn kV) using a dual-source CT system. In addition, an anthropomorphic abdominal phantom with different low-contrast lesions was scanned with the settings previously mentioned but also at only a half and a quarter of the initial dose. Dual-energy data were processed, and virtual monoenergetic images (range, 40-190 keV) were generated. Beside the established technique, a newly developed prototype algorithm to calculate monoenergetic images (Mono+) was used. To avoid noise increase at lower calculated energies, which is a known drawback of virtual monoenergetic images at low kilo electron-volt, a regional spatial frequency-based recombination of the high signal at lower energies and the superior noise properties at medium energies is performed to optimize CNR in case of Mono+ images. The CNR and low-contrast detectability were evaluated. RESULTS: For all phantom sizes, the Mono+ technique provided increasing iodine CNR with decreasing kilo electron-volt, with the optimum CNR obtained at the lowest energy level of 40 keV. For all investigated phantom sizes, CNR of Mono+ images at low kilo electron-volt was superior to the CNR in single-energy images at an equivalent radiation dose and even higher than the CNR obtained with 80-kV protocols. In case of the anthropomorphic phantom, low-contrast detectability in monoenergetic images was, for all settings, similar to the circular phantoms, best for the voltage combination 80/140 Sn kV, irrespective of the dose level. For all dual-energy voltage combinations, the Mono+ algorithm led to superior results compared with single-energy imaging. DISCUSSION: With regard to optimized iodine CNR, it is more efficient to perform dual-energy scans and compute virtual monoenergetic images at 40 keV using the Mono+ technique than to perform low kilovolt scans. Given the improved CNR, the Mono+ algorithm could be very useful in improving both detection and differential diagnosis of abdominal lesions, specifically low-contrast lesions, as well as in other anatomical regions where improved iodine CNR is beneficial.


Assuntos
Meios de Contraste , Iodo , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Razão Sinal-Ruído
6.
Med Phys ; 36(12): 5641-53, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095277

RESUMO

PURPOSE: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. METHODS: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. RESULTS: No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom acquired with the ECG-triggered high-pitch scan mode were visually free from motion artifacts at heart rates of 60 and 70 bpm. However, image quality started to deteriorate for higher heart rates. At equivalent image quality, the ECG-triggered high-pitch scan mode demonstrated lower radiation dose than other cardiac scan techniques on the same DSCT equipment (25% and 60% dose reduction compared to ECG-triggered sequential step-and-shoot and ECG-gated spiral with x-ray pulsing). CONCLUSIONS: A high-pitch (up to pitch = 3.2), high-temporal-resolution (up to 75 ms) dual-source CT scan mode produced equivalent image quality relative to single-source scans using a more typical pitch value (pitch = 1.0). The resultant reduction in the overall acquisition time may offer clinical advantage for cardiovascular, trauma, and pediatric CT applications. In addition, ECG-triggered high-pitch scanning may be useful as an alternative to ECG-triggered sequential scanning for patients with low to moderate heart rates up to 70 bpm, with the potential to scan the heart within one heart beat at reduced radiation dose.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Artefatos , Modelos Lineares , Imagens de Fantasmas , Doses de Radiação , Fatores de Tempo
7.
Eur J Radiol ; 68(3): 362-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842371

RESUMO

During the past years, multi-detector row CT (MDCT) has evolved into clinical practice with a rapid increase of the number of detector slices. Today's 64 slice CT systems allow whole-body examinations with sub-millimeter resolution in short scan times. As an alternative to adding even more detector slices, we describe the system concept and design of a CT scanner with two X-ray tubes and two detectors (mounted on a CT gantry with a mechanical offset of 90 degrees) that has the potential to overcome limitations of conventional MDCT systems, such as temporal resolution for cardiac imaging. A dual source CT (DSCT) scanner provides temporal resolution equivalent to a quarter of the gantry rotation time, independent of the patient's heart rate (83 ms at 0.33 s rotation time). In addition to the benefits for cardiac scanning, it allows to go beyond conventional CT imaging by obtaining dual energy information if the two tubes are operated at different voltages. Furthermore, we discuss how both acquisition systems can be used to add the power reserve of two X-ray tubes for long scan ranges and obese patients. Finally, future advances of DSCT are highlighted.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Avaliação da Tecnologia Biomédica , Tomografia Computadorizada por Raios X/tendências
8.
Radiology ; 245(1): 111-21, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17717329

RESUMO

PURPOSE: To prospectively evaluate diagnostic accuracy of 64-section computed tomography (CT) for evaluation of aortic regurgitation (AR), with transthoracic echocardiography (TTE) as reference. MATERIALS AND METHODS: The institutional review board approved this study; written informed consent was obtained. Thirty patients (23 men, seven women; mean age, 56.6 years) with AR underwent TTE and retrospective electrocardiographically gated 64-section CT. CT data sets were reconstructed in 5% steps from 40% to 90% of R-R interval for analysis. Maximum regurgitant orifice area (ROA) in diastole was planimetrically measured with CT, and measurements were compared with semiquantitative classification with TTE (Spearman rank order correlation coefficients). Receiver operating characteristic (ROC) curves were calculated for differentiation between degrees of AR with ROA measurements. Dimensions of the aortic root and left ventricular parameters were compared (Pearson correlation analysis). RESULTS: A significant correlation was observed between CT planimetric size of ROA (mean, 62 mm2+/-63 [standard deviation]; range, 6-224 mm2) and TTE classification of mild, moderate, and severe AR (r=0.84, P<.001). With ROC analysis, discrimination between degrees of AR with CT was highly accurate when cutoff ROAs (25 mm2 and 75 mm2) were used. A significant correlation was observed between methods in dimensions of aortic annulus (mean, 29.0 mm+/-4.6), sinus of Valsalva (mean, 38.3 mm+/-8.6), and ascending aorta (mean, 37.2 mm+/-8.0); mean values were 27.4 mm+/-4.9 (r=0.76, P<.001), 37.7 mm+/-8.6 (r=0.94, P<.001), and 38.2 mm+/-7.9 (r=0.96, P<.001), respectively. Mean end-systolic volume (67 mL+/-38), end-diastolic volume (149 mL+/-48), and ejection fraction (57%+/-13) at CT correlated well with mean results at TTE (65 mL+/-36 [r=0.96, P<.001], 140 mL+/-48 [r=0.91, P<.001], 56%+/-13 [r=0.98, P<.001], respectively). CONCLUSION: Results of assessment of AR with 64-section CT are similar to those with TTE.


Assuntos
Insuficiência da Valva Aórtica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Ecocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
9.
Invest Radiol ; 41(10): 746-52, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16971798

RESUMO

OBJECTIVE: The objective of this study was to assess the accuracy of thick maximum intensity projections (MIP) from computed tomography (CT) data sets mimicking projection images from biplane ventriculography for evaluation of left ventricular (LV) parameters. MATERIALS AND METHODS: Fifty-eight patients underwent 64-slice CT. Multiphase images were reconstructed in 10% steps of the RR interval. MIP images (70-mm thickness) of the contrast-enhanced LV in fixed 30 degrees right anterior oblique (RAO)/60 degrees left anterior oblique (LAO) and in adapted short-/long-axis planes were reconstructed. LV parameters were calculated using the area-length method formula. Three-dimensional assessment with semiautomated software served as reference standard. RESULTS: Use of thick MIP reconstructions had a high intermethod reliability (86-94%) compared with the 3-dimensional approach. Smaller measurement errors were found for thick MIP reconstructions in adapted short-/long-axis planes. A significant projection error (3.0%, P < 0.001) of thick MIP reconstructions was found using fixed 30 degrees RAO/60 degrees LAO compared with adapted short-/long-axis reconstructions. CONCLUSION: Thick MIP reconstructions with adapted short-/long-axis planes allow an accurate assessment of LV parameters compared with the established 3-dimensional method.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Volume Sistólico
10.
Eur Radiol ; 16(2): 256-68, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16341833

RESUMO

We present a performance evaluation of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of 90 degrees . We introduce the system concept and derive its consequences and potential benefits for electrocardiograph [corrected] (ECG)-controlled cardiac CT and for general radiology applications. We evaluate both temporal and spatial resolution by means of phantom scans. We present first patient scans to illustrate the performance of DSCT for ECG-gated cardiac imaging, and we demonstrate first results using a dual-energy acquisition mode. Using ECG-gated single-segment reconstruction, the DSCT system provides 83 ms temporal resolution independent of the patient's heart rate for coronary CT angiography (CTA) and evaluation of basic functional parameters. With dual-segment reconstruction, the mean temporal resolution is 60 ms (minimum temporal resolution 42 ms) for advanced functional evaluation. The z-flying focal spot technique implemented in the evaluated DSCT system allows 0.4 mm cylinders to be resolved at all heart rates. First clinical experience shows a considerably increased robustness for the imaging of patients with high heart rates. As a potential application of the dual-energy acquisition mode, the automatic separation of bones and iodine-filled vessels is demonstrated.


Assuntos
Angiografia Coronária/instrumentação , Estenose Coronária/diagnóstico , Ecocardiografia Quadridimensional/instrumentação , Eletrocardiografia/instrumentação , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Avaliação da Tecnologia Biomédica , Tomografia Computadorizada Espiral/instrumentação , Diástole/fisiologia , Desenho de Equipamento , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Sensibilidade e Especificidade , Sístole/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA