Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
River Res Appl ; 38(4): 639-656, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35602909

RESUMO

Biological monitoring is important for assessing the ecological condition of surface waters. However, there are challenges in determining what constitutes reference conditions, what assemblages should be used as indicators, and how assemblage data should be converted into quantitative indicator scores. In this study, we developed and applied biological condition gradient (BCG) modeling to fish and macroinvertebrate data previously collected from large, sandy bottom southwestern USA rivers. Such rivers are particularly vulnerable to altered flow regimes resulting from dams, water withdrawals and climate change. We found that sensitive ubiquitous taxa for both fish and macroinvertebrates had been replaced by more tolerant taxa, but that the condition assessment ratings based on fish and macroinvertebrate assemblages differed. We conclude that the BCG models based on both macroinvertebrate and fish assemblage condition were useful for classifying the condition of southwestern USA sandy bottom rivers. However, our fish BCG model was slightly more sensitive than the macroinvertebrate model to anthropogenic disturbance, presumably because we had historical fish data, and because fish may be more sensitive to dams and altered flow regimes than are macroinvertebrates.

2.
River Res Appl ; 38(3): 573-594, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35431664

RESUMO

Large river systems are one of the most important water resources for human societies. However, the ecological integrity of large rivers has been altered greatly by human activities. To monitor and manage these ecosystems, multimetric indices (MMI) are considered as efficient tools. This study aimed to develop and validate a fish-based multimetric index for the Karun River basin, Iran (Karun fish-based multi-metric index [KFMMI]). Eighteen rivers and 54 sites in the basin were sampled in July-August 2019, and physico-chemical and habitat characteristics were used to identify reference sites based on principal components analysis (PCA). Of the 54 sites, 14, 26, and 14 sites were classified as least, moderate, and most disturbed sites, respectively. Fifty-four candidate metrics were evaluated for range, responsiveness, and redundancy with other metrics. This resulted in the identification of eight metrics (relative abundance of native and endemic taxa, relative richness of migratory taxa, relative richness of Leuciscidae taxa, relative richness of herbivorous taxa, relative abundance of cyprinid taxa, relative richness of vegetative inhabitant taxa, relative abundance of slow water flow, and relative richness of edge inhabitant taxa) that informed on species richness and composition, migratory status, functional feeding groups, and habitat preferences. The KFMMI showed excellent performance in separating least, moderate, and most disturbed sites in our study area. Regarding water quality, the KFMMI was classified 16, 5, and 29 sites as good, moderate, and bad, respectively. The discrimination efficiency of KFMMI was 81.6%, which makes it an effective management tool for directing restoration actions at most disturbed sites and intensifying protection of least disturbed sites.

3.
Ecol Soc ; 24(4): 1-9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798644

RESUMO

Aquatic ecosystems provide services essential to human health and economies. Therefore, resource management programs aim to ensure the sustainable flow of these services. Stakeholder engagement is often a critical tool in learning what services are of priority to the public and may be integral to the success of aquatic ecosystem management because public participation in planning and decision making can generate broader support, e.g., financial, intellectual, and labor, for the management plan. The collection of such information may even be statutorily mandated, such as in the Clean Water Act of the United States, which requires that water bodies be classified for the beneficial uses, e.g., fisheries, drinking water, or recreation, they provide. Past evaluations of stakeholder engagement with aquatic ecosystems have considered a wide range of factors influencing engagement. We conducted a critical review of the literature on characteristics of stakeholders and characteristics of the environment that influence stakeholder engagement and participation with aquatic ecosystems. Our objective was to identify factors that should be considered in the creation of surveys to help encourage the inclusion of ecological and social beneficial uses data in large-scale water monitoring programs. Factors identified in our review were, extent and influence of place-based knowledge; proximity to, and frequency of visitation of the resource(s) being considered; basic demographics such as age, gender, education, and income; home community type; aesthetic appeal of the resource; and primary reason for engagement with the resource. We propose these factors, with subfactors, as a template for survey development.

4.
Limnologica ; 65: 55-60, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30147196

RESUMO

This multi-year pilot study evaluated a proposed field method for its effectiveness in the collection of a benthic macroinvertebrate sample adequate for use in the condition assessment of streams and rivers in the Neuquén Province, Argentina. A total of 13 sites, distributed across three rivers, were sampled. At each site, benthic macroinvertebrates were collected at 11 transects. Each sample was processed independently in the field and laboratory. Based on a literature review and resource considerations, the collection of 300 organisms (minimum) at each site was determined to be necessary to support a robust condition assessment, and therefore, selected as the criterion for judging the adequacy of the method. This targeted number of organisms was collected at all sites, at a minimum, when collections from all 11 transects were combined. Subsequent bootstrapping analysis of data was used to estimate whether collecting at fewer transects would reach the minimum target number of organisms for all sites. In a subset of sites, the total number of organisms frequently fell below the target when fewer than 11 transects collections were combined.Site conditions where < 300 organisms might be collected are discussed. These preliminary results suggest that the proposed field method results in a sample that is adequate for robust condition assessment of the rivers and streams of interest. When data become available from a broader range of sites, the adequacy of the field method should be reassessed.

5.
Environ Monit Assess ; 186(2): 949-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081815

RESUMO

Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.


Assuntos
Organismos Aquáticos/classificação , Monitoramento Ambiental/métodos , Invertebrados/classificação , Rios/química , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Ecossistema , Invertebrados/crescimento & desenvolvimento , Estados Unidos , United States Environmental Protection Agency
6.
Environ Monit Assess ; 185(9): 7485-99, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23435849

RESUMO

River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Rios , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente
7.
Environ Monit Assess ; 185(9): 7165-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23361647

RESUMO

River science and management can be conducted at a range of spatiotemporal scales from reach to basin levels as long as the project goals and questions are matched correctly with the study design's spatiotemporal scales and dependent variables. These project goals should also incorporate information on the hydrogeomorphically patchy nature of riverine macrosystems which is only partially predictable in type and location from a river's headwaters to its terminus. This patchiness significantly affects a river's habitat template, and thus community structure, ecosystem function, and responses to perturbations. Our manuscript is designed for use by senior administrators at government agencies through entry-level river scientists. It analyzes common challenges in project design and recommends solutions based partially on hierarchical analyses that combine geographic information systems and multivariate statistical analysis to enable self-emergence of a stream's patchy structure. These approaches are useful at all spatial levels and can vary from primary reliance on geospatial techniques at the valley level to a greater dependence on field-based measurements and expert opinion at the reach level. Comparative uses of functional process zones (FPZs = valley-scale hydrogeomorphic patches), ecoregions, hydrologic unit codes, and reaches in project designs are discussed along with other comparative approaches for stream classification and analysis of species distributions (e.g., GAP analysis). Use of hierarchical classification of patch structure for sample stratification, reference site selection, ecosystem services, rehabilitation, and mitigation are briefly explored.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Rios , Conservação dos Recursos Naturais/métodos , Sistemas de Informação Geográfica , Tecnologia de Sensoriamento Remoto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA