Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nanoscale Adv ; 6(2): 458-466, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235099

RESUMO

To investigate potential correlations between human exposure to inhaled particles and pathological effects, the biological monitoring of nanoparticles in broncho-alveolar lavages (BAL) from patients has been proposed. To better understand the underlying mechanisms of toxicity, we propose to couple this biomonitoring of nanoparticles to their in vitro toxicity assessment. However, BAL obtained from regular clinical practice are conditioned with sodium hypochlorite solution (in a 50% v/v ratio), which is toxic to cells. The aim of this study was to develop a protocol to neutralize sodium hypochlorite, allowing to properly investigate the toxicity of the nanoparticles BAL contain. We first tried to neutralize chemically the sodium hypochlorite using H2O2, ascorbic acid or sodium ascorbate but this approach was unsuccessful. In addition, standard toxicology assays (MTT, LDH) could not be used because of interference with neutralizing solutions. We thus changed strategy and used ultracentrifugation to isolate nanoparticles from the sodium hypochlorite solution, with satisfactory extraction yields (88 to 100%). We then incubated the extracted nanoparticles with macrophages from the RAW264.7 cell line and assessed the cell viability and pro-inflammatory response. This study can be used as a proof-of-concept for further study of the biological impact of nanoparticles. This approach paves the way for studies aiming at a better understanding of the aetiology of some idiopathic diseases and underlying mechanisms.

2.
Respir Res ; 23(1): 358, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528600

RESUMO

Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Aerossóis/toxicidade
3.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458054

RESUMO

The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure-activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.

4.
Chem Res Toxicol ; 32(7): 1320-1326, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243983

RESUMO

Because it is impossible to assess in vitro or in vivo the toxicity of all nanoparticles available on the market on a case-by-case basis, computational approaches have been proposed as useful alternatives to predict in silico the hazard potential of engineered nanoparticles. Despite promising results, a major issue associated with these mathematical models lies in the a priori choice of the physicochemical descriptors and the biological end points. We performed a thorough bibliographic survey on the biological end points used for nanotoxicology purposes and compared them between experimental and computational approaches. They were found to be disparate: while conventional in vitro nanotoxicology assays usually investigate a large array of biological effects using eukaryotic cells (cytotoxicity, pro-inflammatory response, oxidative stress, genotoxicity), computational studies mostly focus on cell viability and also include studies on prokaryotic cells. We may thus wonder the relevance of building complex mathematical models able to predict accurately a biological end point if this latter is not the most relevant to support human health risk assessment. The choice of biological end points clearly deserves to be more carefully discussed. This could bridge the gap between experimental and computational nanotoxicology studies and allow in silico predictive models to reach their full potential.


Assuntos
Nanopartículas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Determinação de Ponto Final , Humanos , Modelos Biológicos , Medição de Risco
5.
Int J Pharm ; 551(1-2): 281-289, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240829

RESUMO

Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Astrócitos , Cafeína/farmacologia , Linhagem Celular , Meios de Cultivo Condicionados , Humanos , Metotrexato/farmacologia , Rivaroxabana/farmacologia
6.
Nanotoxicology ; 11(9-10): 1211-1224, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29172825

RESUMO

Mineralogical analyses of clinical samples have been proved useful to identify causal relationship between exposure to airborne particles and pulmonary diseases. The most striking example is asbestosis where the assessment of asbestos bodies in patient lung samples has allowed defining values specific of pathologies. However, this type of analyses only considers the micro-sized fraction of the particles, neglecting the specific impact of nano-sized particles which have been otherwise shown to be reactive and able to induce biological effects. Similarly, in nanotoxicology, the mineralogical analysis of pulmonary fluids could be used as an indicator of exposure to inhaled nanoparticles and could help investigations on the relationship between exposure to these nanoparticles and lung diseases. We designed this study first to demonstrate the technical feasibility of this approach, then to get a clear picture of the metals present, and in what form, in patient lungs and finally to determine if indeed it is worth investigating separately the micro, sub-micro and nano fractions. Broncho-alveolar lavages were recovered from 100 patients suffering from interstitial lung diseases. A protocol was specifically developed to isolate three fractions containing respectively microparticles, sub-microparticles and nanoparticles with ions. The metal content in each fraction was qualitatively and quantitatively characterized. Results showed significant differences between the three fractions in terms of metal load confirming that the separate analysis of the fractions is relevant. It also means that the assessment of the micro-sized fraction alone, as commonly done in clinical practice, only gives a partial view of the mineralogical analysis.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Doenças Pulmonares Intersticiais/diagnóstico , Metais/análise , Nanopartículas/análise , Estudos de Viabilidade , Humanos , Pulmão , Doenças Pulmonares Intersticiais/etiologia , Masculino , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Estudos Prospectivos
7.
Toxicol In Vitro ; 27(3): 1049-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402729

RESUMO

Biomolecules can be adsorbed on nanoparticles (NPs) and degraded during in vitro toxicity assays. These artifactual phenomena could lead to misinterpretation of biological activity, such as false-negative results. To avoid possible underestimation of cytokine release after contact between NP and cells, we propose a methodology to account for these artifactual phenomena and lead to accurate measurements. We focused on the pro-inflammatory cytokine tumor necrosis factor TNF-α. We studied well-characterized boehmite engineered NP [aluminum oxide hydroxide, AlO(OH)]. The rate of TNF-α degradation and its adsorption (on boehmite and on the walls of wells) were determined in cell-free conditions by adding a known TNF-α concentration (1500 pg/ml) under various experimental conditions. After a 24-h incubation, we quantified that 7 wt.% of the initial TNF-α was degraded over time, 6 wt.% adsorbed on the walls of 96-well plates, and 13 wt.% adsorbed on the boehmite surface. Finally, boehmite NP were incubated with murine macrophages (RAW 264.7 cell line). The release of TNF-α was assessed for boehmite NP and the experimental data were corrected considering the artifactual phenomena, which accounted for about 20-30% of the total.


Assuntos
Hidróxido de Alumínio/química , Óxido de Alumínio/química , Artefatos , Nanopartículas/química , Testes de Toxicidade , Fator de Necrose Tumoral alfa/química , Adsorção , Hidróxido de Alumínio/toxicidade , Óxido de Alumínio/toxicidade , Animais , Linhagem Celular , L-Lactato Desidrogenase/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA