Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Intern Med ; 294(4): 455-481, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37641393

RESUMO

Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. A second major driver is the development of smart clinical trials and trial concepts which, complemented by real-world evidence, rapidly broaden the spectrum of therapeutic options. Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Ecossistema
2.
Genes Chromosomes Cancer ; 62(9): 557-563, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36852573

RESUMO

Leveraging real-world data (RWD) for drug access is necessary to overcome a key challenge of modern precision oncology: tackling numerous low-prevalence oncogenic mutations across cancers. Withholding a potentially active medication in patients with rare mutations for the sake of control chemotherapy or "best" supportive care is neither practicable nor ethically justifiable anymore, particularly as RWD could meanwhile be used instead, according to scientific principles outlined by the US Food and Drug Administration, European Medicines Agency and other stakeholders. However, practical implementation varies, with occasionally opposite recommendations based on the same evidence in different countries. In the face of growing need for precision drugs, more transparency of evaluation, a priori availability of guidance for the academia and industry, as well as a harmonized framework for health technology assessment across the European Union (EU) are imperative. These could in turn trigger infrastructural changes in national and pan-European registries, cancer management guidelines (e.g., frequency of routine radiologic restaging, inclusion of patient-reported outcomes), and the health data space, to ensure conformity with declared standards and facilitate extraction of RWD sets (including patient-level data) suitable for approval and pricing with minimal effort. For an EU-wide unification of precision cancer medicine, collective negotiation of drug supply contracts and funding solidarity would additionally be required to handle the financial burden. According to experience from pivotal European programs, off-label use could potentially also be harmonized across EU-states to accelerate availability of novel drugs, streamline collection of valuable RWD, and mitigate related costs through wider partnerships with pharmaceutical companies.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Medicina de Precisão , Antineoplásicos/uso terapêutico , Europa (Continente) , União Europeia
3.
Cancer Cell ; 12(6): 501-13, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18068628

RESUMO

Mutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 mutations and experimentally tested the consequences of each candidate leukemogenic allele. This approach identified gain-of-function mutations that activated downstream signaling and conferred sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including mutations in the catalytic domain. These findings support the concept that acquired mutations in cancer may not contribute to malignant transformation and underscore the importance of functional studies to distinguish "driver" mutations underlying tumorigenesis from biologically neutral "passenger" alterations.


Assuntos
Alelos , Mutação/genética , Tirosina Quinase 3 Semelhante a fms/genética , Adulto , Animais , Proliferação de Células/efeitos dos fármacos , Análise Mutacional de DNA , Ativação Enzimática/efeitos dos fármacos , Humanos , Leucemia Monocítica Aguda/enzimologia , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/patologia , Camundongos , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Tirosina Quinase 3 Semelhante a fms/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA