Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Integr Environ Assess Manag ; 18(5): 1199-1205, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34821459

RESUMO

The development of modern, industrial agriculture and its high input-high output carbon energy model is rendering agricultural landscapes less resilient. The expected continued increase in the frequency and intensity of extreme weather events, in conjunction with declining soil health and biodiversity losses, could make food more expensive to produce. The United Nations has called for global action by establishing 17 sustainable development goals (SDGs), four of which are linked to food production and security: declining biodiversity (SDG 15), loss of ecosystem services and agroecosystem stability caused by increasing stress from food production intensification and climate change (SDG 13), declining soil health caused by agricultural practices (SDGs 2 and 6), and dependence on synthetic fertilizers and pesticides to maintain high productivity (SDG 2). To achieve these SDGs, the agriculture sector must take a leading role in reversing the many negative environmental trends apparent in today's agricultural landscapes to ensure that they will adapt and be resilient to climate change in 2030 and beyond. This will demand fundamental changes in how we practice agriculture from an environmental standpoint. Here, we present a perspective focused on the implementation of an agrosystem approach, which we define to promote regenerative agriculture, an integrative approach that provides greater resilience to a changing climate, reverses biodiversity loss, and improves soil health; honors Indigenous ways of knowing and a holistic approach to living off and learning from the land; and supports the establishment of emerging circular economies and community well-being. Integr Environ Assess Manag 2022;18:1199-1205. © 2021 SETAC.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Agricultura , Conservação dos Recursos Naturais , Solo , Nações Unidas
2.
PLoS One ; 13(10): e0205683, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352069

RESUMO

Sustainably feeding the next generation is often described as one of the most pressing "grand challenges" facing the 21st century. Generally, scholars propose addressing this problem by increasing agricultural production, investing in technology to boost yields, changing diets, or reducing food waste. In this paper, we explore whether global food production is nutritionally balanced by comparing the diet that nutritionists recommend versus global agricultural production statistics. Results show that the global agricultural system currently overproduces grains, fats, and sugars while production of fruits and vegetables and protein is not sufficient to meet the nutritional needs of the current population. Correcting this imbalance could reduce the amount of arable land used by agriculture by 51 million ha globally but would increase total land used for agriculture by 407 million ha and increase greenhouse gas emissions. For a growing population, our calculations suggest that the only way to eat a nutritionally balanced diet, save land and reduce greenhouse gas emissions is to consume and produce more fruits and vegetables as well as transition to diets higher in plant-based protein. Such a move will help protect habitats and help meet the Sustainable Development Goals.


Assuntos
Agricultura/estatística & dados numéricos , Produtos Agrícolas/provisão & distribuição , Comportamento Alimentar/fisiologia , Abastecimento de Alimentos/estatística & dados numéricos , Necessidades Nutricionais/fisiologia , Crescimento Demográfico , Agricultura/métodos , Conservação dos Recursos Naturais , Gases de Efeito Estufa/efeitos adversos , Humanos , Desenvolvimento Sustentável
3.
Appl Biochem Biotechnol ; 129-132: 22-40, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16915629

RESUMO

A lignocellulosic-based biorefining strategy may be supported by biomass reserves, created initially with residues from wood product processing or agriculture. Biomass reserves might be expanded using innovative management techniques that reduce vulnerability of feedstock in the forest products or agricultural supply chain. Forest-harvest residue removal, disturbance isolation, and precommercial thinnings might produce 20-33 x 10(6) mt/yr of feedstock for Canadian biorefineries. Energy plantations on marginal Canadian farmland might produce another 9-20 mt. Biomass reserves should be used to support first-generation biorefining installations for bioethanol production, development of which will lead to the creation of future high-value coproducts. Suggestions for Canadian policy reform to support biomass reserves are provided.


Assuntos
Produtos Agrícolas/economia , Produtos Agrícolas/provisão & distribuição , Fontes Geradoras de Energia/economia , Fontes Geradoras de Energia/estatística & dados numéricos , Resíduos Industriais/economia , Resíduos Industriais/estatística & dados numéricos , Modelos Econômicos , Biomassa , Canadá , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/estatística & dados numéricos , Análise Custo-Benefício/métodos
4.
J Environ Manage ; 78(2): 114-27, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16095806

RESUMO

The modern environmental management literature stresses the need for community involvement to identify indicators to monitor progress towards sustainable development and environmental management goals. The purpose of this paper is to assess the impact of participatory processes on sustainability indicator identification and environmental management in three disparate case studies. The first is a process of developing partnerships between First Nations communities, environmental groups, and forestry companies to resolve conflicts over forest management in Western Canada. The second describes a situation in Botswana where local pastoral communities worked with development researchers to reduce desertification. The third case study details an on-going government led process of developing sustainability indicators in Guernsey, UK, that was designed to monitor the environmental, social, and economic impacts of changes in the economy. The comparative assessment between case studies allows us to draw three primary conclusions. (1) The identification and collection of sustainability indicators not only provide valuable databases for making management decisions, but the process of engaging people to select indicators also provides an opportunity for community empowerment that conventional development approaches have failed to provide. (2) Multi-stakeholder processes must formally feed into decision-making forums or they risk being viewed as irrelevant by policy-makers and stakeholders. (3) Since ecological boundaries rarely meet up with political jurisdictions, it is necessary to be flexible when choosing the scale at which monitoring and decision-making occurs. This requires an awareness of major environmental pathways that run through landscapes to understand how seemingly remote areas may be connected in ways that are not immediately apparent.


Assuntos
Participação da Comunidade , Conservação dos Recursos Naturais , Botsuana , Colúmbia Britânica , Guernsey
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA