Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Thromb Haemost ; 19(12): 3193-3202, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580997

RESUMO

Flow cytometry is increasingly used in the study of platelets in inherited and acquired disorders of platelet number and function. However, wide variation exists in specific reagents, methods, and equipment used, making interpretation and comparison of results difficult. The goal of the present study was to provide expert consensus guidance on the use of flow cytometry for the evaluation of platelet disorders. A modified RAND/UCLA survey method was used to obtain a consensus among 11 experts from 10 countries across four continents, on the appropriateness of statements relating to clinical utility, pre-analytical variables, instrument and reagent standardization, methods, reporting, and quality control for platelet flow cytometry. Feedback from the initial survey revealed that uncertainty was sometimes due to lack of expertise with a particular test condition rather than unavailable or ambiguous data. To address this, the RAND method was modified to allow experts to self-identify statements for which they could not provide expert input. There was uniform agreement among experts in the areas of instrument and reagent standardization, methods, reporting, and quality control and this agreement is used to suggest best practices in these areas. However, 25.9% and 50% of statements related to pre-analytical variables and clinical utility, respectively, were rated as uncertain. Thus, while citrate is the preferred anticoagulant for many flow cytometric platelet tests, expert opinions differed on the acceptability of other anticoagulants, particularly heparin. Lack of expert consensus on the clinical utility of many flow cytometric platelet tests indicates the need for rigorous multicenter clinical outcome studies.


Assuntos
Comunicação , Testes de Função Plaquetária , Consenso , Citometria de Fluxo , Humanos , Contagem de Plaquetas
2.
Hum Genet ; 112(1): 42-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12483298

RESUMO

Erythroid and megakaryocytic lineage differentiation and maturation are regulated via cooperation between transcription factor GATA1 and its essential cofactor friend-of-GATA1 (FOG1). The interaction between these two murine proteins is well studied in vitro and depends on the binding of Fog1 to the N-terminal zinc finger (N-finger) of Gata1. We identified the human FOG1 gene on chromosome 16q24 and found expression mainly in hematopoietic cells and also in several other tissues. Sequencing of FOG1 cDNA revealed a 1006 amino-acid protein that contained nine zinc fingers, highly homologous to murine Fog1 fingers. The amino acid sequence and the GATA1-binding capacity of the human and murine finger 5 are however different. Ex vivo binding studies demonstrated that FOG1 interacts with both GATA1 and GATA2. We and others have described patients with mutations in the GATA1 N-finger (V205 M, D218G, D218Y, or G208S), who suffer from macrothrombocytopenia and erythrocyte abnormalities. We now show ex vivo that the interaction between GATA1 and FOG1 is indeed disturbed in platelets and erythrocytes of those patients carrying D218 GATA1 mutations. The identification of the human FOG1 gene will enable the genetic screening of patients with non X-linked thrombocytopenia and dyserythropoiesis.


Assuntos
Substituição de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Humanos Par 16 , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Plaquetas/patologia , Células CHO , Linhagem Celular , Sequência Conservada , Cricetinae , Eritrócitos/patologia , Fatores de Ligação de DNA Eritroide Específicos , Fator de Transcrição GATA1 , Humanos , Células K562 , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA