RESUMO
Background: Femoroacetabular impingement (FAI) cam morphology is routinely assessed using manual measurements of two-dimensional (2D) alpha angles which are prone to high rater variability and do not provide direct three-dimensional (3D) data on these osseous formations. We present CamMorph, a fully automated 3D pipeline for segmentation, statistical shape assessment and measurement of cam volume, surface area and height from clinical magnetic resonance (MR) images of the hip in FAI patients. Methods: The novel CamMorph pipeline involves two components: (I) accurate proximal femur segmentation generated by combining the 3D U-net to identify both global (region) and local (edge) features in clinical MR images and focused shape modelling to generate a 3D anatomical model for creating patient-specific proximal femur models; (II) patient-specific anatomical information from 3D focused shape modelling to simulate 'healthy' femoral bone models with cam-affected region constraints applied to the anterosuperior femoral head-neck region to quantify cam morphology in FAI patients. The CamMorph pipeline, which generates patient-specific data within 5 min, was used to analyse multi-site clinical MR images of the hip to measure and assess cam morphology in male (n=56) and female (n=41) FAI patients. Results: There was excellent agreement between manual and CamMorph segmentations of the proximal femur as demonstrated by the mean Dice similarity index (DSI; 0.964±0.006), 95% Hausdorff distance (HD; 2.123±0.876 mm) and average surface distance (ASD; 0.539±0.189 mm) values. Compared to female FAI patients, male patients had a significantly larger median cam volume (969.22 vs. 272.97 mm3, U=240.0, P<0.001), mean surface area [657.36 vs. 306.93 mm2, t(95)=8.79, P<0.001], median maximum-height (3.66 vs. 2.15 mm, U=407.0, P<0.001) and median average-height (1.70 vs. 0.86 mm, U=380.0, P<0.001). Conclusions: The fully automated 3D CamMorph pipeline developed in the present study successfully segmented and measured cam morphology from clinical MR images of the hip in male and female patients with differing FAI severity and pathoanatomical characteristics.
RESUMO
BACKGROUND: With a growing number of loci associated with late-onset (sporadic) Alzheimer's disease (AD), the polygenic contribution to AD is now well established. The development of polygenic risk score approaches have shown promising results for identifying individuals at higher risk of developing AD, thereby facilitating the development of preventative and therapeutic strategies. A polygenic hazard score (PHS) has been proposed to quantify age-specific genetic risk for AD. In this study, we assessed the predictive power and transferability of this PHS in an independent cohort, to support its clinical utility. RESULTS: Using genotype and imaging data from 780 individuals enrolled in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study, we investigated associations between the PHS and several AD-related traits, including 1) cross-sectional Aß-amyloid (Aß) deposition, 2) longitudinal brain atrophy, 3) longitudinal cognitive decline, 4) age of onset. Except in the cognitive domain, we obtained results that were consistent with previously published findings. The PHS was associated with increased Aß burden, faster regional brain atrophy and an earlier age of onset. CONCLUSION: Overall, the results support the predictive power of a PHS, however, with only marginal improvement compared to apolipoprotein E alone.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Atrofia , Austrália , Estudos Transversais , Humanos , Herança MultifatorialRESUMO
To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint.Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 1849 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system.High intra- and inter-rater reliability (intra-class correlation coefficients > 0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r = 0.84) and anterior (r = 0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F < 0.01, p = 0.98).Our automatic 3D method analysed MR images of the hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the potential to improve analyses of cam-type lesions of the FHN junction for large-scale morphometric and clinical MR investigations of the human hip region.
Assuntos
Algoritmos , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Imageamento Tridimensional/métodos , Pescoço/diagnóstico por imagem , Pescoço/patologia , Adolescente , Adulto , Automação , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Radiografia , Reprodutibilidade dos Testes , Adulto JovemRESUMO
Understanding structure-function relationships in the brain after stroke is reliant not only on the accurate anatomical delineation of the focal ischemic lesion, but also on previous infarcts, remote changes and the presence of white matter hyperintensities. The robust definition of primary stroke boundaries and secondary brain lesions will have significant impact on investigation of brain-behavior relationships and lesion volume correlations with clinical measures after stroke. Here we present an automated approach to identify chronic ischemic infarcts in addition to other white matter pathologies, that may be used to aid the development of post-stroke management strategies. Our approach uses Bayesian-Markov Random Field (MRF) classification to segment probable lesion volumes present on fluid attenuated inversion recovery (FLAIR) MRI. Thereafter, a random forest classification of the information from multimodal (T1-weighted, T2-weighted, FLAIR, and apparent diffusion coefficient (ADC)) MRI images and other context-aware features (within the probable lesion areas) was used to extract areas with high likelihood of being classified as lesions. The final segmentation of the lesion was obtained by thresholding the random forest probabilistic maps. The accuracy of the automated lesion delineation method was assessed in a total of 36 patients (24 male, 12 female, mean age: 64.57±14.23yrs) at 3months after stroke onset and compared with manually segmented lesion volumes by an expert. Accuracy assessment of the automated lesion identification method was performed using the commonly used evaluation metrics. The mean sensitivity of segmentation was measured to be 0.53±0.13 with a mean positive predictive value of 0.75±0.18. The mean lesion volume difference was observed to be 32.32%±21.643% with a high Pearson's correlation of r=0.76 (p<0.0001). The lesion overlap accuracy was measured in terms of Dice similarity coefficient with a mean of 0.60±0.12, while the contour accuracy was observed with a mean surface distance of 3.06mm±3.17mm. The results signify that our method was successful in identifying most of the lesion areas in FLAIR with a low false positive rate.
Assuntos
Isquemia Encefálica/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Teorema de Bayes , Infarto Cerebral/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Substância Branca/patologiaRESUMO
BACKGROUND: ß-amyloid (Aß) plaques in brain's grey matter (GM) are one of the pathological hallmarks of Alzheimer's disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with (11)C or (18)F radiotracers. Estimating Aß burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less Aß imaging quantification method that requires only PET images for reliable Aß burden estimations. MATERIALS AND METHODS: The proposed method has been developed using a multi-atlas based approach on (11)C-PiB scans from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was registered to the subject's PET image for PiB estimation within GM. The results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values. RESULTS: All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB- subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex. CONCLUSION: The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool for Aß imaging scans when MRI images are unavailable.