Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Environ Toxicol Chem ; 39(9): 1813-1825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495970

RESUMO

Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined. Environ Toxicol Chem 2020;39:1813-1825. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes/metabolismo , Monitoramento Ambiental/métodos , Água Doce , Oncorhynchus mykiss/metabolismo , Animais , Bioacumulação , Cinética , Metaboloma , Organização para a Cooperação e Desenvolvimento Econômico , Poluentes Químicos da Água/análise
2.
Environ Int ; 139: 105708, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294573

RESUMO

Environmental risk assessment associated with aquatic and terrestrial contamination is mostly based on predicted or measured environmental concentrations of a limited list of chemicals in a restricted number of environmental compartments. High resolution mass spectrometry (HRMS) can provide a more comprehensive picture of exposure to harmful chemicals, particularly through the retrospective analysis of digitally stored HRMS data. Using this methodology, our study characterized the contamination of various environmental compartments including 154 surface water, 46 urban effluent, 67 sediment, 15 soil, 34 groundwater, 24 biofilm, 41 gammarid and 49 fish samples at 95 sites widely distributed over the Swiss Plateau. As a proof-of-concept, we focused our investigation on antifungal azoles, a class of chemicals of emerging concern due to their endocrine disrupting effects on aquatic organisms and humans. Our results demonstrated the occurrence of antifungal azoles and some of their (bio)transformation products in all the analyzed compartments (0.1-100 ng/L or ng/g d.w.). Comparison of actual and predicted concentrations showed the partial suitability of level 1 fugacity modelling in predicting the exposure to azoles. Risk quotient calculations additionally revealed risk of exposure especially if some of the investigated rivers and streams are used for drinking water production. The case study clearly shows that the retrospective analysis of HRMS/MS data can improve the current knowledge on exposure and the related risks to chemicals of emerging concern and can be effectively employed in the future for such purposes.


Assuntos
Azóis , Poluentes Químicos da Água , Animais , Antifúngicos/análise , Antifúngicos/toxicidade , Azóis/toxicidade , Monitoramento Ambiental , Humanos , Espectrometria de Massas , Estudos Retrospectivos , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 543(Pt A): 116-122, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26580733

RESUMO

Cycloxaprid (CYC) is a novel broad-spectrum neonicotinoid insecticide that has been developed for agricultural pest control. The fate of the (14)C-labeled racemic and enantio-pure CYC isomers in flooded and anaerobic soil was investigated using radioisotope tracing techniques. After 100 d of incubation, only a minor portion (<1%) of the applied CYC isomers is mineralized by each of the four tested soil types. The fraction of initially applied radioactive CYC dissipated into the bound or non-extractable residues (BR) increases with increase in the length of the incubation period, reaching up to 53.0-81.6%. The dissipation of the CYC through mineralization or formation of BR is strongly influenced by soil properties, such as humic content, pH value, and retained microbial activity. Amongst the soils studied, the fluvio-marine yellow loamy soil displayed the highest tendency to mineralize CYC while the coastal saline soil exhibited the strongest tendency to form BR. The observation that the water phase retained the large portion(>60%) of the radioactivity attributed to the total extractable residue suggested that under the experimental condition, the initially applied (14)C-labeled CYC residues were readily available for leaching or offsite transport. Additionally, no enantiomer-specific behaviors are observed. The results from this study provide a framework for assessing the environmental impact resulting from the use of this pesticide.


Assuntos
Monitoramento Ambiental , Compostos Heterocíclicos com 3 Anéis/análise , Inseticidas/análise , Piridinas/análise , Poluentes do Solo/análise , Solo/química , Anaerobiose , Inundações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA