Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Food Chem Toxicol ; 179: 113940, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487858

RESUMO

In recent years, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has conducted a program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavor ingredients. This publication, twelfth in the series, details the re-evaluation of NFCs whose constituent profiles are characterized by alicyclic or linear ketones. In its re-evaluation, the Expert Panel applies a scientific constituent-based procedure for the safety evaluation of NFCs in commerce using a congeneric group approach. Estimated intakes of each congeneric group of the NFC are evaluated using the well-established and conservative Threshold of Toxicological Concern (TTC) approach. In addition, studies on the toxicity and genotoxicity of members of the congeneric groups and the NFCs under evaluation are reviewed. The scope of the safety evaluation of the NFCs contained herein does not include added use in dietary supplements or any products other than food. Thirteen (13) NFCs derived from the Boronia, Cinnamomum, Thuja, Ruta, Salvia, Tagetes, Hyssopus, Iris, Perilla and Artemisia genera are affirmed as generally recognized as safe (GRAS) under conditions of their intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Produtos Biológicos , Tagetes , Aromatizantes , Indústria Alimentícia , Suplementos Nutricionais , Extratos Vegetais
3.
Food Chem Toxicol ; 175: 113697, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870670

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation does not include added use in dietary supplements or any products other than food. Twenty-three NFCs, derived from the Hibiscus, Melissa, Ricinus, Anthemis, Matricaria, Cymbopogon, Saussurea, Spartium, Pelargonium, Levisticum, Rosa, Santalum, Viola, Cryptocarya and Litsea genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Aromatizantes , Óleos Voláteis , Aromatizantes/toxicidade , Camomila , Indústria Alimentícia , Terpenos , Etanol
4.
Food Chem Toxicol ; 174: 113643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739890

RESUMO

The FEMA Expert Panel program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavoring ingredients in food has resulted in the publication of an updated constituent-based procedure as well as publications on the safety evaluation of many botanical-derived NFCs. This publication, ninth in the series and related to the ninth publication, describes the affirmation of the generally recognized as safe (GRAS) status for NFCs with propenylhydroxybenzene and allylalkoxybenzene constituents under their conditions of intended use as flavoring ingredients added to food. The Panel's procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology for the NFCs themselves and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s) with suspected genotoxic potential, the estimated intake of the individual constituent is compared to the TTC for compounds with structural alerts for genotoxicity and if exceeded, a margin of exposure is calculated using BMDL10 values derived from benchmark dose analyses using Bayesian model averaging, as presented in the tenth article of the series. Safety evaluations for NFCs derived from allspice, anise seed, star anise, sweet fennel seed and pimento leaves were conducted and their GRAS status was affirmed for use as flavoring ingredients. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food.


Assuntos
Foeniculum , Pimenta , Pimpinella , Testes de Toxicidade , Teorema de Bayes , Aromatizantes/toxicidade , Suplementos Nutricionais
5.
Food Chem Toxicol ; 175: 113646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804339

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Myristica , Ocimum basilicum , Petroselinum , Teorema de Bayes , Aromatizantes/toxicidade , Aromatizantes/química , Canadá
6.
Food Chem Toxicol ; 173: 113580, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610475

RESUMO

The Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) applies its procedure for the safety evaluation of natural flavor complexes (NFCs) to re-evaluate the safety of Asafetida Oil (Ferula assa-foetida L.) FEMA 2108, Garlic Oil (Allium sativum L.) FEMA 2503 and Onion Oil (Allium cepa L.) FEMA 2817 for use as flavoring in food. This safety evaluation is part of a series of evaluations of NFCs for use as flavoring ingredients conducted by the Expert Panel that applies a scientific procedure published in 2005 and updated in 2018. Using a group approach that relies on a complete chemical characterization of the NFC intended for commerce, the constituents of each NFC are organized into well-defined congeneric groups and the estimated intake of each constituent congeneric group is evaluated using the conservative threshold of toxicological concern (TTC) concept. Data on the metabolism, genotoxic potential and toxicology for each constituent congeneric group are reviewed as well as studies on each NFC. Based on the safety evaluation, Asafetida Oil (Ferula assa-foetida L.), Garlic Oil (Allium sativum L.) and Onion Oil (Allium cepa L.) were affirmed as generally recognized as safe (GRASa) under their conditions of intended use as flavor ingredients.


Assuntos
Produtos Biológicos , Ferula , Alho , Aromatizantes/toxicidade , Aromatizantes/química , Óleos de Plantas/toxicidade
7.
Food Chem Toxicol ; 155: 112357, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217737

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, the sixth in the series, will summarize the re-evaluation of eight NFCs whose constituent profiles are characterized by significant amounts of eucalyptol and/or other cyclic ethers. This re-evaluation was based on a procedure first published in 2005 and subsequently updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of the NFC intended for commerce and the organization of its chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of the constituents of the congeneric groups and the NFC under evaluation. Eight NFCs derived from the Eucalyptus, Melaleuca, Origanum, Laurus, Rosmarinus and Salvia genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Éteres Cíclicos/toxicidade , Aromatizantes/toxicidade , Óleos de Plantas/toxicidade , Animais , Células CHO , Linhagem Celular Tumoral , Qualidade de Produtos para o Consumidor , Cricetulus , Éteres Cíclicos/química , Eucaliptol/toxicidade , Feminino , Aromatizantes/química , Humanos , Masculino , Camundongos , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos de Plantas/química , Plantas/química , Gravidez , Ratos Wistar , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos
8.
Food Chem Toxicol ; 155: 112378, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217738

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients, mostly consisting of a variety of essential oils and botanical extracts. This publication, seventh in the series, re-evaluates NFCs with constituent profiles dominated by phenolic derivatives including carvacrol, thymol and related compounds using a constituent-based procedure first published in 2005 and updated in 2018. The procedure is based on the chemical characterization of each NFC as intended for commerce and the estimated intake of the constituent congeneric groups. The procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology of the constituent congeneric groups and the NFC under evaluation. Herein, the FEMA Expert Panel affirmed the generally recognized as safe (GRAS) status of seven phenolic derivative-based NFCs, Origanum Oil (Extractive) (FEMA 2828), Savory Summer Oil (FEMA 3013), Savory Summer Oleoresin (FEMA 3014), Savory Winter Oil (FEMA 3016), Savory Winter Oleoresin (FEMA 3017), Thyme Oil (FEMA 3064) and Thyme White Oil (FEMA 3065) under their conditions of intended use as flavor ingredients.


Assuntos
Aromatizantes/toxicidade , Óleos Voláteis/toxicidade , Fenóis/toxicidade , Óleos de Plantas/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Escherichia coli/efeitos dos fármacos , Feminino , Aromatizantes/química , Masculino , Camundongos Endogâmicos ICR , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos Voláteis/química , Origanum/química , Fenóis/química , Óleos de Plantas/química , Ratos Sprague-Dawley , Ratos Wistar , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Thymus (Planta)/química
9.
Food Chem Toxicol ; 145: 111585, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32702506

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association initiated the safety re-evaluation of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, 4th in a series focusing on the safety evaluation of NFCs, presents an evaluation of NFCs rich in hydroxyallylbenzene and hydroxypropenylbenzene constituents using a procedure initially published in 2005 and updated in 2018 that evaluates the safety of naturally occurring mixtures for their intended use as flavoring ingredients. The procedure requires the characterization of the chemical composition for each NFC and subsequent organization of the constituents into defined congeneric groups. The safety of each NFC is evaluated using the conservative threshold of toxicological concern (TTC) approach together with studies on absorption, metabolism and toxicology of the NFC and its constituent congeneric groups. By the application of this procedure, seven NFCs, derived from clove, cinnamon leaf and West Indian bay leaf were affirmed as "generally recognized as safe (GRAS)" under their conditions of intended use as flavor ingredients. An eighth NFC, an oleoresin of West Indian bay leaf, was affirmed based on its estimated intake, which is below the TTC of 0.15 µg/person per day for compounds with structural alerts for genotoxicity.


Assuntos
Cinnamomum zeylanicum/química , Aromatizantes/toxicidade , Laurus/química , Syzygium/química , Derivados de Alilbenzenos , Animais , Anisóis/química , Anisóis/toxicidade , Qualidade de Produtos para o Consumidor , Escherichia coli/efeitos dos fármacos , Eugenol/química , Eugenol/toxicidade , Feminino , Aromatizantes/química , Humanos , Masculino , Camundongos , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Ratos , Safrol/química , Safrol/toxicidade , Salmonella typhimurium/efeitos dos fármacos
10.
Food Chem Toxicol ; 145: 111584, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32682832

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, fifth in the series, evaluates the safety of NFCs containing linalool and/or other characteristic mono- and sesquiterpenoid tertiary alcohols and esters using the safety evaluation procedure published by the FEMA Expert Panel in 2005 and updated in 2018. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of the chemical constituents of each NFC into well-defined congeneric groups. The safety of each NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of both the constituent congeneric groups and the NFCs. Sixteen NFCs, derived from the Lavandula, Aniba, Elettaria, Daucus, Salvia, Coriandrum, Ribes, Guaiacum/Bulnesia, Citrus, Pogostemon, Melaleuca and Michelia genera, were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Aromatizantes/toxicidade , Monoterpenos/toxicidade , Plantas/química , Sesquiterpenos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Escherichia coli/efeitos dos fármacos , Feminino , Aromatizantes/química , Humanos , Masculino , Camundongos , Monoterpenos/química , Testes de Mutagenicidade , Nível de Efeito Adverso não Observado , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Ratos , Salmonella typhimurium/efeitos dos fármacos , Sesquiterpenos/química
11.
Food Chem Toxicol ; 135: 110870, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31604112

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).


Assuntos
Produtos Biológicos/química , Aromatizantes/farmacologia , Extratos Vegetais/farmacologia , Plantas/química , Aromatizantes/normas , Estados Unidos , United States Food and Drug Administration
12.
Food Chem Toxicol ; 135: 110949, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31751643

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, third in the series, considers NFCs composed primarily of constituents with the 3-phenyl-2-propenyl or a cinnamyl functional group, using the procedure outlined in 2005 and updated in 2018 to evaluate the safety of naturally-occurring mixtures for their intended use as flavor ingredients. The procedure relies on a complete chemical characterization of the NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. Six NFCs from the Myroxylon and Cinnamomum genera, Balsam Oil, Peru (FEMA 2117), Tolu Balsam Extract (FEMA 3069), Cassia Bark Extract (FEMA 2257), Cassia Bark Oil (FEMA 2258), Cinnamon Bark Extract (FEMA 2290) and Cinnamon Bark Oil (FEMA 2291) were evaluated and affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients.


Assuntos
Cinnamomum/química , Aromatizantes/toxicidade , Myroxylon/química , Óleos Voláteis/toxicidade , Extratos Vegetais/toxicidade , Animais , Linhagem Celular , Qualidade de Produtos para o Consumidor , Aromatizantes/química , Humanos , Nível de Efeito Adverso não Observado , Óleos Voláteis/química , Extratos Vegetais/química , Medição de Risco
14.
J Oncol Pharm Pract ; 25(4): 865-868, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29651916

RESUMO

BACKGROUND: Irinotecan (CPT-11) is the key drug used in chemotherapy for many malignant tumors. CPT-11 has cholinergic activity and induces perspiration during intravenous administration. In this study, concentrations of CPT-11 and its active metabolite, SN-38, released during perspiration were measured and risk of exposure of these drugs was assessed. METHOD: Beads of sweat were collected using a dropper from four patients undergoing a chemotherapy regimen involving intravenous administration of CPT-11. The concentrations of CPT-11 and SN-38 in sweat were measured using liquid chromatography tandem mass spectrometry. RESULT: Chemotherapy regimens were capecitabine and irinotecan plus bevacizumab (n = 1), CPT-11 monotherapy (n = 1), and oxaliplatin-irinotecan-leucovorin-5-fluorouracil (n = 2). Uridine diphosphate-glucuronosyltransferase 1A1 phenotypes were *6 homo-type (n = 1), *6 hetero-type (n = 1), and wild type (n = 2). CPT-11 dose was 292.3 ± 75.5 mg/body weight (mean ± standard deviation). CPT-11 was detected in sweat secreted by all the four patients, and its mean (±standard deviation) concentration was 252.6 (±111.9) ng/ml. SN-38 was detected in only one of the patients who received oxaliplatin-irinotecan-leucovorin-5-fluorouracil treatment and who had the wild-type uridine diphosphate-glucuronosyltransferase 1A1 phenotype at a concentration of 74.37 ng/ml. CONCLUSION: CPT-11 and SN-38 are detected in sweat released during intravenous CPT-11 administration. Beads of sweat or linen clothes that absorb the sweat might be the source of CPT-11 and SN-38 exposure.


Assuntos
Irinotecano/efeitos adversos , Suor/efeitos dos fármacos , Inibidores da Topoisomerase I/efeitos adversos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Glucuronosiltransferase/fisiologia , Humanos , Irinotecano/farmacocinética , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Suor/metabolismo
15.
Food Chem Toxicol ; 124: 192-218, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30481573

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication is the first in a series and summarizes the evaluation of 54 Citrus-derived NFCs using the procedure outlined in Smith et al. (2005) and updated in Cohen et al. (2018) to evaluate the safety of naturally-occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of each NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. As a result of the application of the procedure, 54 natural flavor complexes derived from botanicals of the Citrus genus were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavoring ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Citrus/química , Aromatizantes/toxicidade , Animais , Feminino , Aromatizantes/química , Manipulação de Alimentos/métodos , Humanos , Masculino , Camundongos Endogâmicos ICR , Ratos Sprague-Dawley , Ratos Wistar
16.
J Occup Health ; 60(1): 10-30, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29046510

RESUMO

OBJECTIVES: This report reviews the carcinogenicity of multi-walled carbon nanotubes (MWCNTs) in experimental animals, concentrating on MWNT-7, a straight fibrous MWCNT. METHODS: MWCNTs were administered to mice and rats by intraperitoneal injection, intrascrotal injection, subcutaneous injection, intratracheal instillation and inhalation. RESULTS: Intraperitoneal injection of MWNT-7 induced peritoneal mesothelioma in mice and rats. Intrascrotal injection induced peritoneal mesothelioma in rats. Intratracheal instillation of MWCNT-N (another straight fibrous MWCNT) induced both lung carcinoma and pleural mesothelioma in rats. In the whole body inhalation studies, in mice MWNT-7 promoted methylcholanthrene-initiated lung carcinogenesis. In rats, inhalation of MWNT-7 induced lung carcinoma and lung burdens of MWNT-7 increased with increasing concentration of airborne MWNT-7 and increasing duration of exposure. CONCLUSIONS: Straight, fibrous MWCNTs exerted carcinogenicity in experimental animals. Phagocytosis of MWCNT fibers by macrophages was very likely to be a principle factor in MWCNT lung carcinogenesis. Using no-observed-adverse-effect level-based approach, we calculated that the occupational exposure limit (OEL) of MWNT-7 for cancer protection is 0.15 µg/m3 for a human worker. Further studies on the effects of the shape and size of MWCNT fibers and mode of action on the carcinogenicity are required.


Assuntos
Carcinogênese/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Animais , Carcinoma/induzido quimicamente , Humanos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Concentração Máxima Permitida , Mesotelioma/induzido quimicamente , Mesotelioma Maligno , Camundongos , Exposição Ocupacional/normas , Neoplasias Peritoneais/induzido quimicamente , Fagocitose/efeitos dos fármacos , Neoplasias Pleurais/induzido quimicamente , Ratos
17.
Mutagenesis ; 31(3): 341-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26152227

RESUMO

Qualitative and quantitative approaches are important issues in field of carcinogenic risk assessment of the genotoxic carcinogens. Herein, we provide quantitative data on low-dose hepatocarcinogenicity studies for three genotoxic hepatocarcinogens: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and N-nitrosodiethylamine (DEN). Hepatocarcinogenicity was examined by quantitative analysis of glutathione S-transferase placental form (GST-P) positive foci, which are the preneoplastic lesions in rat hepatocarcinogenesis and the endpoint carcinogenic marker in the rat liver medium-term carcinogenicity bioassay. We also examined DNA damage and gene mutations which occurred through the initiation stage of carcinogenesis. For the establishment of points of departure (PoD) from which the cancer-related risk can be estimated, we analyzed the above events by quantitative no-observed-effect level and benchmark dose approaches. MeIQx at low doses induced formation of DNA-MeIQx adducts; somewhat higher doses caused elevation of 8-hydroxy-2'-deoxyquanosine levels; at still higher doses gene mutations occurred; and the highest dose induced formation of GST-P positive foci. These data indicate that early genotoxic events in the pathway to carcinogenesis showed the expected trend of lower PoDs for earlier events in the carcinogenic process. Similarly, only the highest dose of IQ caused an increase in the number of GST-P positive foci in the liver, while IQ-DNA adduct formation was observed with low doses. Moreover, treatment with DEN at low doses had no effect on development of GST-P positive foci in the liver. These data on PoDs for the markers contribute to understand whether genotoxic carcinogens have a threshold for their carcinogenicity. The most appropriate approach to use in low dose-response assessment must be approved on the basis of scientific judgment.


Assuntos
Testes de Carcinogenicidade/métodos , Adutos de DNA/análise , Dietilnitrosamina/toxicidade , Fígado/efeitos dos fármacos , Quinolinas/toxicidade , Quinoxalinas/toxicidade , Animais , Carcinógenos/toxicidade , DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Glutationa Transferase , Guanosina/análogos & derivados , Guanosina/análise , Humanos , Fígado/metabolismo , Masculino , Camundongos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Quinolinas/análise , Ratos , Ratos Endogâmicos F344
18.
Artigo em Inglês | MEDLINE | ID: mdl-25953400

RESUMO

This report summarizes the discussion, conclusions, and points of consensus of the IWGT Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (QWG) based on a meeting in Foz do Iguaçu, Brazil October 31-November 2, 2013. Topics addressed included (1) the need for quantitative dose-response analysis, (2) methods to analyze exposure-response relationships & derive point of departure (PoD) metrics, (3) points of departure (PoD) and mechanistic threshold considerations, (4) approaches to define exposure-related risks, (5) empirical relationships between genetic damage (mutation) and cancer, and (6) extrapolations across test systems and species. This report discusses the first three of these topics and a companion report discusses the latter three. The working group critically examined methods for determining point of departure metrics (PoDs) that could be used to estimate low-dose risk of genetic damage and from which extrapolation to acceptable exposure levels could be made using appropriate mode of action information and uncertainty factors. These included benchmark doses (BMDs) derived from fitting families of exponential models, the No Observed Genotoxic Effect Level (NOGEL), and "threshold" or breakpoint dose (BPD) levels derived from bilinear models when mechanistic data supported this approach. The QWG recognizes that scientific evidence suggests that thresholds below which genotoxic effects do not occur likely exist for both DNA-reactive and DNA-nonreactive substances, but notes that small increments of the spontaneous level cannot be unequivocally excluded either by experimental measurement or by mathematical modeling. Therefore, rather than debating the theoretical possibility of such low-dose effects, emphasis should be placed on determination of PoDs from which acceptable exposure levels can be determined by extrapolation using available mechanistic information and appropriate uncertainty factors. This approach places the focus on minimization of the genotoxic risk, which protects against the risk of the development of diseases resulting from the genetic damage. Based on analysis of the strengths and weaknesses of each method, the QWG concluded that the order of preference of PoD metrics is the statistical lower bound on the BMD > the NOGEL > a statistical lower bound on the BPD. A companion report discusses the use of these metrics in genotoxicity risk assessment, including scaling and uncertainty factors to be considered when extrapolating below the PoD and/or across test systems and to the human.


Assuntos
DNA , Modelos Genéticos , Mutagênicos/análise , Mutagênicos/toxicidade , Mutação , Neoplasias , DNA/genética , DNA/metabolismo , Humanos , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Neoplasias/induzido quimicamente , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medição de Risco
19.
Artigo em Inglês | MEDLINE | ID: mdl-25953401

RESUMO

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Mutagênicos/toxicidade , Neoplasias , Relação Dose-Resposta a Droga , Humanos , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Neoplasias/induzido quimicamente , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos/efeitos dos fármacos , Medição de Risco
20.
Asian Pac J Cancer Prev ; 11(1): 19-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20593922

RESUMO

While it has been generally accepted that genotoxic carcinogens have no dose threshold for their carcinogenic potential, there is increasing evidence that very low doses in fact are incapable of inducing tumours or preneoplastic lesions. Thus not only so-called epigenetic 'non-genotoxic' compounds like phenobarbital and benzene hexachloride, but also unequivocally genotoxic carcinogens like the heterocyclic amines, 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline and amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and the nitrosamines diethylnitrosamine, and dimethylnitrosamine, may exhibit a practical dose threshold below which they do not induce histopathologically assessable lesions. Some form of physiological adaptation may thus be expected to occur in response to low doses of all types of DNA-damaging agents. With 'non-genotoxic' agents there may even be hormesis or paradoxical protection at very low dose.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Neoplasias Intestinais/induzido quimicamente , Neoplasias Hepáticas Experimentais/induzido quimicamente , Fenobarbital/toxicidade , Animais , Glutationa Transferase/metabolismo , Neoplasias Intestinais/patologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Testes de Mutagenicidade , Ratos , Ratos Endogâmicos F344 , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA