Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioinformatics ; 38(19): 4598-4604, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924980

RESUMO

MOTIVATION: Data-driven deep learning techniques usually require a large quantity of labeled training data to achieve reliable solutions in bioimage analysis. However, noisy image conditions and high cell density in bacterial biofilm images make 3D cell annotations difficult to obtain. Alternatively, data augmentation via synthetic data generation is attempted, but current methods fail to produce realistic images. RESULTS: This article presents a bioimage synthesis and assessment workflow with application to augment bacterial biofilm images. 3D cyclic generative adversarial networks (GAN) with unbalanced cycle consistency loss functions are exploited in order to synthesize 3D biofilm images from binary cell labels. Then, a stochastic synthetic dataset quality assessment (SSQA) measure that compares statistical appearance similarity between random patches from random images in two datasets is proposed. Both SSQA scores and other existing image quality measures indicate that the proposed 3D Cyclic GAN, along with the unbalanced loss function, provides a reliably realistic (as measured by mean opinion score) 3D synthetic biofilm image. In 3D cell segmentation experiments, a GAN-augmented training model also presents more realistic signal-to-background intensity ratio and improved cell counting accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/jwang-c/DeepBiofilm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Processamento de Imagem Assistida por Computador/métodos , Biofilmes
2.
Biophys J ; 116(10): 1970-1983, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31030884

RESUMO

The trajectory of a single protein in the cytosol of a living cell contains information about its molecular interactions in its native environment. However, it has remained challenging to accurately resolve and characterize the diffusive states that can manifest in the cytosol using analytical approaches based on simplifying assumptions. Here, we show that multiple intracellular diffusive states can be successfully resolved if sufficient single-molecule trajectory information is available to generate well-sampled distributions of experimental measurements and if experimental biases are taken into account during data analysis. To address the inherent experimental biases in camera-based and MINFLUX-based single-molecule tracking, we use an empirical data analysis framework based on Monte Carlo simulations of confined Brownian motion. This framework is general and adaptable to arbitrary cell geometries and data acquisition parameters employed in two-dimensional or three-dimensional single-molecule tracking. We show that, in addition to determining the diffusion coefficients and populations of prevalent diffusive states, the timescales of diffusive state switching can be determined by stepwise increasing the time window of averaging over subsequent single-molecule displacements. Time-averaged diffusion analysis of single-molecule tracking data may thus provide quantitative insights into binding and unbinding reactions among rapidly diffusing molecules that are integral for cellular functions.


Assuntos
Citosol/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Difusão , Cinética , Método de Monte Carlo , Imagem Individual de Molécula/métodos , Fatores de Tempo
3.
Integr Biol (Camb) ; 10(9): 502-515, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30101242

RESUMO

In bacterial type 3 secretion, substrate proteins are actively transported from the bacterial cytoplasm into the host cell cytoplasm by a large membrane-embedded machinery called the injectisome. Injectisomes transport secretion substrates in response to specific environmental signals, but the molecular details by which the cytosolic secretion substrates are selected and transported through the type 3 secretion pathway remain unclear. Secretion activity and substrate selectivity are thought to be controlled by a sorting platform consisting of the proteins SctK, SctQ, SctL, and SctN, which together localize to the cytoplasmic side of membrane-embedded injectisomes. However, recent work revealed that sorting platform proteins additionally exhibit substantial cytosolic populations and that SctQ reversibly binds to and dissociates from the cytoplasmic side of membrane-embedded injectisomes. Based on these observations, we hypothesized that dynamic molecular turnover at the injectisome and cytosolic assembly among sorting platform proteins is a critical regulatory component of type 3 secretion. To determine whether sorting platform complexes exist in the cytosol, we measured the diffusive properties of the two central sorting platform proteins, SctQ and SctL, using live cell high-throughput 3D single-molecule tracking microscopy. Single-molecule trajectories, measured in wild-type and mutant Yersinia enterocolitica cells, reveal that both SctQ and SctL exist in several distinct diffusive states in the cytosol, indicating that these proteins form stable homo- and hetero-oligomeric complexes in their native environment. Our findings provide the first diffusive state-resolved insights into the dynamic regulatory network that interfaces stationary membrane-embedded injectisomes with the soluble cytosolic components of the type 3 secretion system.


Assuntos
Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Imagem Individual de Molécula/instrumentação , Imagem Individual de Molécula/métodos , Yersinia enterocolitica/metabolismo , Algoritmos , Membrana Celular/metabolismo , Flagelos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Método de Monte Carlo , Plasmídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Especificidade por Substrato , Virulência
4.
Phys Chem Chem Phys ; 10(20): 2894-909, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18473038

RESUMO

Pulsed electron beams allow for the direct atomic-scale observation of structures with femtosecond to picosecond temporal resolution in a variety of fields ranging from materials science to chemistry and biology, and from the condensed phase to the gas phase. Motivated by recent developments in ultrafast electron diffraction and imaging techniques, we present here a comprehensive account of the fundamental processes involved in electron pulse propagation, and make comparisons with experimental results. The electron pulse, as an ensemble of charged particles, travels under the influence of the space-charge effect and the spread of the momenta among its electrons. The shape and size, as well as the trajectories of the individual electrons, may be altered. The resulting implications on the spatiotemporal resolution capabilities are discussed both for the N-electron pulse and for single-electron coherent packets introduced for microscopy without space-charge.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica/métodos , Modelos Químicos , Método de Monte Carlo , Cristalografia/instrumentação , Microscopia Eletrônica/instrumentação , Microscopia Eletrônica de Transmissão/instrumentação , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA