Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38926092

RESUMO

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.ABBREVIATIONS: BTIP = Brain Tumor Imaging Protocol; CE = Contrast-Enhancing; CNS = Central Nervous System; CR = Complete Response; ECOG = Eastern Cooperative Oncology Group; HGG = High-Grade Glioma; IDH = Isocitrate Dehydrogenase; IRF = Independent Radiologic Facility; LGG = Low-Grade Glioma; KPS = Karnofsky Performance Status; MR = Minor Response; mRANO = Modified RANO; NANO = Neurological Assessment in Neuro-Oncology; ORR = Objective Response Rate; OS = Overall Survival; PD = Progressive Disease; PFS = Progression-Free Survival; PR = Partial Response; PsP = Pseudoprogression; RANO = Response Assessment in Neuro-Oncology; RECIST = Response Evaluation Criteria In Solid Tumors; RT = Radiation Therapy; SD = Stable Disease; Tx = Treatment.

2.
Neuro Oncol ; 26(4): 596-608, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38071654

RESUMO

Despite major strides in cancer research and therapy, these advances have not been equitable across race and ethnicity. Historically marginalized groups (HMG) are more likely to have inadequate preventive screening, increased delays in diagnosis, and poor representation in clinical trials. Notably, Black, Hispanic, and Indigenous people represent 30% of the population but only 9% of oncology clinical trial participants. As a result, HMGs lack equitable access to novel therapies, contradicting the principle of distributive justice, as enshrined in the Belmont report, which demands the equitable selection of subjects in research involving human subjects. The lack of clinical trial diversity also leads to low generalizability and potentially harmful medical practices. Specifically, patients with brain cancer face unique barriers to clinical trial enrollment and completion due to disease-specific neurologic and treatment-induced conditions. Collectively, the intersection of these disease-specific conditions with social determinants of health fosters a lack of diversity in clinical trials. To ameliorate this disparity in neuro-oncology clinical trial participation, we present interventions focused on improving engagement of HMGs. Proposals range from inclusive trial design, decreasing barriers to care, expanding trial eligibility, access to tumor profiling for personalized medical trials, setting reasonable metrics and goals for accrual, working with patient community stakeholders, diversifying the neuro-oncology workforce, and development of tools to overcome biases with options to incentivize equity. The diversification of participation amongst neuro-oncology clinical trials is imperative. Equitable access and inclusion of HMG patients with brain tumors will not only enhance research discoveries but will also improve patient care.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/terapia , Oncologia , Etnicidade
3.
J Clin Oncol ; 41(33): 5187-5199, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774317

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria for high-grade gliomas (RANO-HGG) and low-grade gliomas (RANO-LGG) were developed to improve reliability of response assessment in glioma trials. Over time, some limitations of these criteria were identified, and challenges emerged regarding integrating features of the modified RANO (mRANO) or the immunotherapy RANO (iRANO) criteria. METHODS: Informed by data from studies evaluating the different criteria, updates to the RANO criteria are proposed (RANO 2.0). RESULTS: We recommend a standard set of criteria for both high- and low-grade gliomas, to be used for all trials regardless of the treatment modalities being evaluated. In the newly diagnosed setting, the postradiotherapy magnetic resonance imaging (MRI), rather than the postsurgical MRI, will be used as the baseline for comparison with subsequent scans. Since the incidence of pseudoprogression is high in the 12 weeks after radiotherapy, continuation of treatment and confirmation of progression during this period with a repeat MRI, or histopathologic evidence of unequivocal recurrent tumor, are required to define tumor progression. However, confirmation scans are not mandatory after this period nor for the evaluation of treatment for recurrent tumors. For treatments with a high likelihood of pseudoprogression, mandatory confirmation of progression with a repeat MRI is highly recommended. The primary measurement remains the maximum cross-sectional area of tumor (two-dimensional) but volumetric measurements are an option. For IDH wild-type glioblastoma, the nonenhancing disease will no longer be evaluated except when assessing response to antiangiogenic agents. In IDH-mutated tumors with a significant nonenhancing component, clinical trials may require evaluating both the enhancing and nonenhancing tumor components for response assessment. CONCLUSION: The revised RANO 2.0 criteria refine response assessment in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Reprodutibilidade dos Testes , Recidiva Local de Neoplasia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
4.
Mol Ther Methods Clin Dev ; 26: 532-546, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092362

RESUMO

Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.

5.
Neuro Oncol ; 21(1): 26-36, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137421

RESUMO

No standard criteria exist for assessing response and progression in clinical trials involving patients with meningioma, and there is no consensus on the optimal endpoints for trials currently under way. As a result, there is substantial variation in the design and response criteria of meningioma trials, making comparison between trials difficult. In addition, future trials should be designed with accepted standardized endpoints. The Response Assessment in Neuro-Oncology Meningioma Working Group is an international effort to develop standardized radiologic criteria for treatment response for meningioma clinical trials. In this proposal, we present the recommendations for response criteria and endpoints for clinical trials involving patients with meningiomas.


Assuntos
Ensaios Clínicos como Assunto , Neoplasias Meníngeas/patologia , Meningioma/patologia , Neuroimagem/métodos , Avaliação de Processos e Resultados em Cuidados de Saúde , Guias de Prática Clínica como Assunto/normas , Terapia Combinada , Progressão da Doença , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico por imagem , Meningioma/terapia
6.
Neuro Oncol ; 20(2): 184-191, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29016900

RESUMO

The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Meios de Contraste/farmacologia , Glioblastoma/patologia , Humanos
7.
Neuro Oncol ; 19(5): 625-635, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453751

RESUMO

Background: The Macdonald criteria and the Response Assessment in Neuro-Oncology (RANO) criteria define radiologic parameters to classify therapeutic outcome among patients with malignant glioma and specify that clinical status must be incorporated and prioritized for overall assessment. But neither provides specific parameters to do so. We hypothesized that a standardized metric to measure neurologic function will permit more effective overall response assessment in neuro-oncology. Methods: An international group of physicians including neurologists, medical oncologists, radiation oncologists, and neurosurgeons with expertise in neuro-oncology drafted the Neurologic Assessment in Neuro-Oncology (NANO) scale as an objective and quantifiable metric of neurologic function evaluable during a routine office examination. The scale was subsequently tested in a multicenter study to determine its overall reliability, inter-observer variability, and feasibility. Results: The NANO scale is a quantifiable evaluation of 9 relevant neurologic domains based on direct observation and testing conducted during routine office visits. The score defines overall response criteria. A prospective, multinational study noted a >90% inter-observer agreement rate with kappa statistic ranging from 0.35 to 0.83 (fair to almost perfect agreement), and a median assessment time of 4 minutes (interquartile range, 3-5). Conclusion: The NANO scale provides an objective clinician-reported outcome of neurologic function with high inter-observer agreement. It is designed to combine with radiographic assessment to provide an overall assessment of outcome for neuro-oncology patients in clinical trials and in daily practice. Furthermore, it complements existing patient-reported outcomes and cognition testing to combine for a global clinical outcome assessment of well-being among brain tumor patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neuroimagem/métodos , Neoplasias Encefálicas/patologia , Humanos , Resultado do Tratamento
8.
Clin Cancer Res ; 22(3): 575-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490307

RESUMO

PURPOSE: The RANO criteria have not been assessed using outcome data from prospective trials. We examined the radiologic data of patients with recurrent glioblastoma from the randomized phase II trial (AVF3708g) to determine the effect of including T2/FLAIR evaluation as per RANO criteria on measurements of objective response rates (ORRs) and progression-free survival (PFS) compared with assessment based on contrast enhancement (Macdonald criteria). EXPERIMENTAL DESIGN: The ORRs and median PFS were determined using the RANO criteria and compared with those obtained using the Macdonald criteria. Landmark analyses were performed at 2, 4, and 6 months, and Cox proportional hazard models were used to determine the associations between OR and progression with subsequent survival. RESULTS: The ORRs were 0.331 [95% confidence interval (CI), 0.260-0.409] and 0.393 (95% CI, 0.317-0.472) by RANO and Macdonald criteria, respectively (P < 0.0001). The median PFS was 4.6 months (95% CI, 4.1-5.5) using RANO criteria, compared with 6.4 months (95% CI, 5.5-7.1) as determined by Macdonald criteria (P = 0.01). At 2-, 4-, and 6-month landmarks, both OR status and PFS determined by either RANO or Macdonald criteria were predictive of overall survival [OS; hazard ratios for 4-month landmark (OR HR = 1.93, P = 0.0012; PFS HR, 4.23, P < 0.0001)]. CONCLUSIONS: The inclusion of T2/FLAIR assessment resulted in statistically significant differences in median PFS and ORRs compared with assessment of solely enhancing tumor (Macdonald criteria), although OR and PFS determined by both RANO and Macdonald criteria correlated with OS.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Bevacizumab/administração & dosagem , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/mortalidade , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Variações Dependentes do Observador , Ensaios Clínicos Controlados Aleatórios como Assunto , Retratamento , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
9.
Curr Oncol Rep ; 13(1): 42-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125354

RESUMO

Advances in molecular genetics have aided the identification of potential biomarkers with significant clinical promise in neurooncology. These advances and the evolution of targeted therapeutics necessitate the development and incorporation of innovative clinical trial designs that can effectively validate and assess the clinical utility of biomarkers. In this article, we review the use and potential of several such designs in neurooncology trials in order to support the development of personalized treatment approaches for brain tumor patients.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/terapia , Ensaios Clínicos como Assunto/métodos , Biologia Molecular/métodos , Medicina de Precisão/métodos , Protocolos Antineoplásicos , Neoplasias Encefálicas/genética , Humanos , Projetos de Pesquisa
10.
J Clin Oncol ; 28(11): 1963-72, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20231676

RESUMO

Currently, the most widely used criteria for assessing response to therapy in high-grade gliomas are based on two-dimensional tumor measurements on computed tomography (CT) or magnetic resonance imaging (MRI), in conjunction with clinical assessment and corticosteroid dose (the Macdonald Criteria). It is increasingly apparent that there are significant limitations to these criteria, which only address the contrast-enhancing component of the tumor. For example, chemoradiotherapy for newly diagnosed glioblastomas results in transient increase in tumor enhancement (pseudoprogression) in 20% to 30% of patients, which is difficult to differentiate from true tumor progression. Antiangiogenic agents produce high radiographic response rates, as defined by a rapid decrease in contrast enhancement on CT/MRI that occurs within days of initiation of treatment and that is partly a result of reduced vascular permeability to contrast agents rather than a true antitumor effect. In addition, a subset of patients treated with antiangiogenic agents develop tumor recurrence characterized by an increase in the nonenhancing component depicted on T2-weighted/fluid-attenuated inversion recovery sequences. The recognition that contrast enhancement is nonspecific and may not always be a true surrogate of tumor response and the need to account for the nonenhancing component of the tumor mandate that new criteria be developed and validated to permit accurate assessment of the efficacy of novel therapies. The Response Assessment in Neuro-Oncology Working Group is an international effort to develop new standardized response criteria for clinical trials in brain tumors. In this proposal, we present the recommendations for updated response criteria for high-grade gliomas.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Diagnóstico por Imagem/normas , Glioma/diagnóstico , Glioma/terapia , Ensaios Clínicos como Assunto , Diagnóstico por Imagem/métodos , Guias como Assunto , Humanos , Prognóstico , Resultado do Tratamento
11.
Neuro Oncol ; 8(2): 156-65, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16533757

RESUMO

Significant limitations are associated with the use of standard radiographic measurements as indicators of response in glioma therapy trials. The Response Evaluation Criteria in Solid Tumors (RECIST) were recently introduced in an attempt to standardize and simplify assessment of response to treatment in cancer clinical trials. However, their applicability in gliomas has been assessed in only a very small number of patients. Our aim was to validate radiographic response assessment in newly diagnosed glioma patients. Sixty-seven newly diagnosed glioma patients participating in nine North Central Cancer Treatment Group glioma trials were included; 565 MRI scans were analyzed. All scans were performed with the same technique. Kappa statistics were calculated to determine agreement between assessment methods. Cox proportional hazards analyses and time-dependent Cox models were used to assess the association between different measurement methods and overall survival. Results showed agreement between the one-dimensional (1D) and two-dimensional (2D) measurements both for T2 images and for gadolinium-enhanced images. Comparison of duration of response and time to progression as assessed by eight different methods showed similarity in response assessments by 1D, 2D, area, and volume gadolinium measurements. In contrast, time to progression was significantly shorter when assessed by 1D-T2 or 2D-T2 images as compared to area-T2 or volume-T2 images. This set of data indicates that RECIST could be used instead of 2D imaging for response assessment in newly diagnosed glioma trials. Overall, responses as determined by any tumor measurement method did not correlate with patient survival for either enhancing or nonenhancing tumors, although the small number of responders limits definitive conclusions. Time-dependent Cox models demonstrated that, in contrast to the case of nonenhancing tumors, progression as determined by 1D, 2D, area, and volume measurements in gadolinium-enhanced images was predictive of survival of patients with enhancing tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/normas , Neurorradiografia/normas , Adulto , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Ensaios Clínicos como Assunto , Terapia Combinada , Feminino , Gadolínio , Glioma/mortalidade , Glioma/terapia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA