Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Spine J ; 33(4): 1665-1674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407613

RESUMO

INTRODUCTION: Our objective was to assess abnormalities of the odontoid-hip axis (OD-HA) angle in a mild scoliotic population to determine whether screening for malalignment would help predict the distinction between progressive and stable adolescent idiopathic scoliosis (AIS) at early stage. MATERIALS AND METHODS: All patients (non-scoliotic and AIS) underwent a biplanar X-ray between 2013 and 2020. In AIS, inclusion criteria were Cobb angle between 10° and 25°; Risser sign lower than 3; age higher than 10 years; and no previous treatment. A 3D spine reconstruction was performed, and the OD-HA was computed automatically. A reference corridor for OD-HA values in non-scoliotic subjects was calculated as the range [5th-95th percentiles]. A severity index, helping to distinguish stable and progressive AIS, was calculated and weighted according to the OD-HA value. RESULTS: Eighty-three non-scoliotic and 205 AIS were included. The mean coronal and sagittal OD-HA angles in the non-scoliotic group were 0.2° and -2.5°, whereas in AIS values were 0.3° and -0.8°, respectively. For coronal and sagittal OD-HA, 27.5% and 26.8% of AIS were outside the reference corridor compared with 10.8% in non-scoliotic (OR = 3.1 and 3). Adding to the severity index a weighting factor based on coronal OD-HA, for thoracic scoliosis, improved the positive predictive value by 9% and the specificity by 13%. CONCLUSION: Analysis of OD-HA suggests that AIS patients are almost three times more likely to have malalignment compared with a non-scoliotic population. Furthermore, analysis of coronal OD-HA is promising to help the clinician distinguish between stable and progressive thoracic scoliosis.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Criança , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Estudos Longitudinais , Cifose/diagnóstico por imagem , Estudos de Coortes , Radiografia , Estudos Retrospectivos
2.
Spine (Phila Pa 1976) ; 48(15): 1072-1081, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972119

RESUMO

STUDY DESIGN: Retrospective observational study. OBJECTIVE: Biomechanical and geometrical descriptors are used to improve global alignment and proportion (GAP) prediction accuracy to detect proximal junctional failure (PJF). SUMMARY OF BACKGROUND DATA: PJF is probably the most important complication after sagittal imbalance surgery. The GAP score has been introduced as an effective predictor for PJF, but it fails in certain situations. In this study, 112 patient records were gathered (57 PJF; 55 controls) with biomechanical and geometrical descriptors measured to stratify control and failure cases. PATIENTS AND METHODS: Biplanar EOS radiographs were used to build 3-dimensional full-spine models and determine spinopelvic sagittal parameters. The bending moment (BM) was calculated as the upper body mass times, the effective distance to the body center of mass at the adjacent upper instrumented vertebra +1. Other geometrical descriptors such as full balance index (FBI), spino-sacral angle (SSA), C7 plumb line/sacrofemoral distance ratio (C7/SFD ratio), T1-pelvic angle (TPA), and cervical inclination angle (CIA) were also evaluated. The respective abilities of the GAP, FBI, SSA, C7/SFD, TPA, CIA, body weight, body mass index, and BM to discriminate PJF cases were analyzed through receiver operating characteristic curves and corresponding areas under the curve (AUC). RESULTS: GAP (AUC = 0.8816) and FBI (AUC = 0.8933) were able to discriminate PJF cases but the highest discrimination power (AUC = 0.9371) was achieved with BM at upper instrumented vertebra + 1. Parameter cutoff analyses provided quantitative thresholds to characterize the control and failure groups and led to improved PJF discrimination, with GAP and BM being the most important contributors. SSA (AUC = 0.2857), C7/SFD (AUC = 0.3143), TPA (AUC = 0.5714), CIA (AUC = 0.4571), body weight (AUC = 0.6319), and body mass index (AUC = 0.7716) did not adequately predict PJF. CONCLUSION: BM reflects the quantitative biomechanical effect of external loads and can improve GAP accuracy. Sagittal alignments and mechanical integrated scores could be used to better prognosticate the risk of PJF.


Assuntos
Cifose , Fusão Vertebral , Humanos , Cifose/cirurgia , Fusão Vertebral/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Pescoço , Estudos Retrospectivos , Peso Corporal
4.
J Biomech ; 114: 110154, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33279818

RESUMO

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine, the aetiology and pathogenesis of which are poorly understood. Unfortunately, biomechanical data describing trunk muscle activation and intervertebral load, which can contribute to understanding the pathomechanics of the AIS spine, cannot be measured in vivo due to the invasiveness of the procedures. The present study provides the biomechanical characterization of the spinal loads in scoliotic subjects by exploiting musculoskeletal modelling approach, allowing for calculating biomechanical measures in an assigned posture. A spine model with articulated ribcage previously developed in AnyBody software was applied. The predicted outcomes were evaluated in the upright posture, depending on scoliosis severity and curve type, in a population of 132 scoliotic subjects with mild, moderate, and severe scoliosis. Radiographic-based three dimensional reconstruction of vertebral orientations and scaling of body segments and trunk muscle cross-section area guaranteed geometrical subject-specificity. Validation analysis supporting the application of the model was performed. Trunk muscles were found more activated in the convex side of the scoliotic curve, in agreement with reference in vivo measurements, with progressive increase with scoliosis severity. The intervertebral lateral shear was found positively correlated with the severity of the scoliosis, demonstrating that the transferred load is not a priori orthogonal to vertebral endplate in the frontal plane, and thus questioning the assumption of the 'follower load' approach in case of experimental or computational study on the scoliotic spine. The study opens the way for the subject-specific characterization of scoliosis in assigned loading and motion conditions.


Assuntos
Cifose , Escoliose , Adolescente , Humanos , Músculo Esquelético , Postura , Escoliose/diagnóstico por imagem , Coluna Vertebral
5.
Materials (Basel) ; 13(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947653

RESUMO

While the non-linear behavior of spine segments has been extensively investigated in the past, the behavior of the Anterior Longitudinal Ligament (ALL) and its contribution during flexion and extension has never been studied considering the spine as a whole. The aims of the present study were to exploit Digital Image Correlation (DIC) to: (I) characterize the strain distribution on the ALL during flexion-extension, (II) compare the strain on specific regions of interest (ROI) of the ALL in front of the vertebra and of the intervertebral disc, (III) analyze the non-linear relationship between the surface strain and the imposed rotation and the resultant moment. Three specimens consisting of 6 functional spinal units (FSUs) were tested in flexion-extension. The full-field strain maps were measured on the surface of the ALL, and the most strained areas were investigated in detail. The DIC-measured strains showed different values of peak strain in correspondence with the vertebra and the disc but the average over the ROIs was of the same order of magnitude. The strain-moment curves showed a non-linear response like the moment-angle curves: in flexion the slope of the strain-moment curve was greater than in extension and with a more abrupt change of slope. To the authors' knowledge, this is the first study addressing, by means of a full-field strain measurement, the non-linear contribution of the ALL to spine biomechanics. This study was limited to only three specimens; hence the results must be taken with caution. This information could be used in the future to build more realistic numerical models of the spine.

6.
Health Econ Rev ; 7(1): 17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28470542

RESUMO

OBJECTIVE: Lumbar arthrodesis is a common surgical technique that consists of the fixation of one or more motion segments with pedicle screws and rods. However, spinal surgery using these techniques is expensive and has a significant impact on the budgets of hospitals and Healthcare Systems. While reusable and disposable instruments for laparoscopic interventions have been studied in literature, no specific information exists regarding instrument kits for lumbar arthrodesis. The aim of the present study was to perform a complete health technology assessment comparing a disposable instrument kit for lumbar arthrodesis (innovative device) with the standard reusable instrument. METHODS: A prospective and observational study was implemented, by means of investigation of administrative records of patients undergoing a lumbar arthrodesis surgical procedure. The evaluation was conducted in 2013, over a 12- month time horizon, considering all the procedures carried out using the two technologies. A complete health technology assessment and a multi-criteria decision analysis approach were implemented in order to compare the two alternative technologies. Economic impact (with the implementation of an activity based costing approach), social, ethical, organisational, and technology-related aspects were taken into account. RESULTS: Although the cost analysis produced similar results in the comparison of the two technologies (total cost equal to € 4,279.1 and € 4,242.6 for reusable instrument kit and the disposable one respectively), a significant difference between the two instrument kits was noted, in particular concerning the organisational impact and the patient safety. CONCLUSIONS: The replacement of a reusable instrument kit for lumbar arthrodesis, with a disposable one, could improve the management of this kind of devices in hospital settings.

7.
J Magn Reson Imaging ; 40(5): 1181-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24323799

RESUMO

PURPOSE: To investigate the 3D displacement and the local strain of the medial meniscus and its attachments under compressive loading. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) scans of six porcine knee joints were performed under unloaded and loaded conditions (100% and 200% body weight [BW]). Volumes were registered to obtain a 3D displacement field of the medial meniscus and its attachments, which were divided into five anatomic compartments. Finally, displacements of the center of mass of each compartment and the local strain were analyzed. RESULTS: The meniscus and its attachments significantly displaced by up to 2.6 ± 1.2 mm (P < 0.01) under knee joint loads of 200% BW. An increase of 0.9 mm in the distance between posterior and anterior horn (P < 0.001) was observed. The meniscus and its attachment showed an average radial stretch of 0.6%, an average circumferential stretch of 0.9%, and an average axial compression of 11.6% at 200% BW. CONCLUSION: High-resolution MRI was successfully combined with image registration to investigate the displacement and strain of the meniscus and its attachments under compression. The results of this study contribute to the basic understanding of meniscal movement which may impact the design of meniscal implants and the validation of finite element models in the future.


Assuntos
Força Compressiva/fisiologia , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Meniscos Tibiais/fisiologia , Suporte de Carga/fisiologia , Animais , Elasticidade , Articulação do Joelho/fisiologia , Imagens de Fantasmas , Suínos
8.
Clin Biomech (Bristol, Avon) ; 25(5): 397-401, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20149505

RESUMO

BACKGROUND: Previous studies documented the importance of the positioning and the design parameters of the prosthesis in determining the biomechanics of the implanted spine. However, a comprehensive biomechanical evaluation of the significance of these parameters is still lacking. Therefore, the paper is aimed to the quantification of their influence on the flexibility of the implanted spine and the force transmitted through the facet joints. METHODS: A finite element model of the C5-C6 spine unit including a ball-and-socket disc prosthesis was built. Three probabilistic variables were considered: the axial, antero-posterior and lateral positions of the center of rotation. Randomized input parameters were generated with the Monte Carlo method. Pure moments of 1.6 Nm in flexion, extension, lateral bending and axial rotation were imposed to the upper endplate of C5; 100 simulations were conducted for the each of the considered loading conditions. FINDINGS: Axial position of the center of rotation influenced the spine flexibility in all loading conditions and the facet force in extension, lateral bending and axial rotation. The antero-posterior position was found to influence the spine flexibility in flexion and extension, and the facet force in lateral bending and axial rotation. The lateral position was not significant. INTERPRETATION: The effects of the positioning of a cervical disc prosthesis were estimated. A wide range of mechanical behaviors can be obtained by the manufacturers by appropriately manipulating the position of the center of rotation. A proper positioning of the artificial disc during the surgery, in particular in the antero-posterior direction, was found to be of critical importance.


Assuntos
Artroplastia de Substituição , Vértebras Cervicais/fisiologia , Vértebras Cervicais/cirurgia , Disco Intervertebral/fisiologia , Prótese Articular , Articulação Zigapofisária/fisiologia , Articulação Zigapofisária/cirurgia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Método de Monte Carlo , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA