Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mutat Res ; 723(2): 108-20, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21182982

RESUMO

A working group convened at the 2009 5th IWGT to discuss possibilities for improving in vivo genotoxicity assessment by investigating possible links to standard toxicity testing. The working group considered: (1) combination of acute micronucleus (MN) and Comet assays into a single study, (2) integration of MN assays into repeated-dose toxicity (RDT) studies, (3) integration of Comet assays into RDT studies, and (4) requirements for the top dose when integrating genotoxicity measurements into RDT studies. The working group reviewed current requirements for in vivo genotoxicity testing of different chemical product classes and identified opportunities for combination and integration of genotoxicity endpoints for each class. The combination of the acute in vivo MN and Comet assays was considered by the working group to represent a technically feasible and scientifically acceptable alternative to conducting independent assays. Two combination protocols, consisting of either a 3- or a 4-treament protocol, were considered equally acceptable. As the integration of MN assays into RDT studies had already been discussed in detail in previous IWGT meetings, the working group focussed on factors that could affect the results of the integrated MN assay, such as the possible effects of repeated bleeding and the need for early harvests. The working group reached the consensus that repeated bleeding at reasonable volumes is not a critical confounding factor for the MN assay in rats older than 9 weeks of age and that rats bled for toxicokinetic investigations or for other routine toxicological purposes can be used for MN analysis. The working group considered the available data as insufficient to conclude that there is a need for an early sampling point for MN analysis in RDT studies, in addition to the routine determination at terminal sacrifice. Specific scenarios were identified where an additional early sampling can have advantages, e.g., for compounds that exert toxic effects on hematopoiesis, including some aneugens. For the integration of Comet assays into RDT studies, the working group reached the consensus that, based upon the limited amount of data available, integration is scientifically acceptable and that the liver Comet assay can complement the MN assay in blood or bone marrow in detecting in vivo genotoxins. Practical issues need to be considered when conducting an integrated Comet assay study. Freezing of tissue samples for later Comet assay analysis could alleviate logistical problems. However, the working group concluded that freezing of tissue samples can presently not be recommended for routine use, although it was noted that results from some laboratories look promising. Another discussion topic centred around the question as to whether tissue toxicity, which is more likely observed in RDT than in acute toxicity studies, would affect the results of the Comet assay. Based on the available data from in vivo studies, the working group concluded that there are no clear examples where cytotoxicity, by itself, generates increases or decreases in DNA migration. The working group identified the need for a refined guidance on the use and interpretation of cytotoxicity methods used in the Comet assay, as the different methods used generally lead to inconsistent conclusions. Since top doses in RDT studies often are limited by toxicity that occurs only after several doses, the working group discussed whether the sensitivity of integrated genotoxicity studies is reduced under these circumstances. For compounds for which in vitro genotoxicity studies yielded negative results, the working group reached the consensus that integration of in vivo genotoxicity endpoints (typically the MN assay) into RDT studies is generally acceptable. If in vitro genotoxicity results are unavailable or positive, consensus was reached that the maximum tolerated dose (MTD) is acceptable as the top dose in RDT studies in many cases, such as when the RDT study MTD or exposure is close (50% or greater) to an acute study MTD or exposure. Finally, the group agreed that exceptions to this general rule might be acceptable, for example when human exposure is lower than the preclinical exposure by a large margin.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Ensaio Cometa/métodos , Humanos , Testes para Micronúcleos/métodos , Ratos , Testes de Toxicidade/normas
2.
Int J Toxicol ; 29(1): 3-19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19903873

RESUMO

Vorinostat (SAHA, Zolinza), a histone deacetylase inhibitor, is assessed in nonclinical studies to support its approval for cutaneous T-cell lymphoma. Vorinostat is weakly mutagenic in the Ames assay; is clastogenic in rodent (ie, CHO) cells but not in normal human lymphocytes; and is weakly positive in an in vivo mouse micronucleus assay. No effects are observed on potassium ion currents in the hERG assay up to 300 microM (safety margin approximately 300-fold the approximately 1 microM serum concentration associated with the 400 mg/d maximum recommended human dose. No rat respiratory or central nervous system effects are found at 150 mg/kg (>2-fold maximum recommended human dose). No cardiovascular effects, including effects on QTc interval, are observed after a single oral dose (150 mg/kg) in dogs. Vorinostat is orally dosed daily in rats (controls, 20, 50, or 150 mg/kg/d) and dogs (controls, 60, 80, or 100/125/160 mg/kg/d) for 26 weeks with a 4-week recovery. Rat vorinostat-related adverse findings are decreased food consumption, weight loss, and hematologic changes; a no observed adverse effects level is not established. In dogs, adverse effects are primarily gastrointestinal; the no observed adverse effects level is 60 mg/kg/d (approximately 6-fold maximum recommended human dose). Toxicities are reversible and can be monitored in the clinic.


Assuntos
Inibidores Enzimáticos/toxicidade , Histona Desacetilases , Ácidos Hidroxâmicos/toxicidade , Animais , Células Sanguíneas/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , DNA/efeitos dos fármacos , Cães , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacocinética , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Humanos , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos , Ratos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Testes de Toxicidade , Vorinostat , Redução de Peso/efeitos dos fármacos
3.
Toxicol Pathol ; 37(6): 714-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700658

RESUMO

The two-year cancer bioassay in rodents remains the primary testing strategy for in-life screening of compounds that might pose a potential cancer hazard. Yet experimental evidence shows that cancer is often secondary to a biological precursor effect, the mode of action is sometimes not relevant to humans, and key events leading to cancer in rodents from nongenotoxic agents usually occur well before tumorigenesis and at the same or lower doses than those producing tumors. The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) hypothesized that the signals of importance for human cancer hazard identification can be detected in shorter-term studies. Using the National Toxicology Program (NTP) database, a retrospective analysis was conducted on sixteen chemicals with liver, lung, or kidney tumors in two-year rodent cancer bioassays, and for which short-term data were also available. For nongenotoxic compounds, results showed that cellular changes indicative of a tumorigenic endpoint can be identified for many, but not all, of the chemicals producing tumors in two-year studies after thirteen weeks utilizing conventional endpoints. Additional endpoints are needed to identify some signals not detected with routine evaluation. This effort defined critical questions that should be explored to improve the predictivity of human carcinogenic risk.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Bases de Dados Factuais , Neoplasias Experimentais/induzido quimicamente , Animais , Feminino , Humanos , Fenômenos do Sistema Imunitário/efeitos dos fármacos , Masculino , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Ratos , Ratos Endogâmicos F344 , Medição de Risco/métodos
4.
Toxicol Appl Pharmacol ; 208(1): 1-20, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16164957

RESUMO

In April 2004, the Health and Environmental Sciences Institute, a branch of the International Life Sciences Institute, with support from the National Institute of Environmental Health Sciences, organized a workshop to discuss the biological significance of DNA adducts. Workshop speakers and attendees included leading international experts from government, academia, and industry in the field of adduct detection and interpretation. The workshop initially examined the relationship between measured adduct levels in the context of exposure and dose. This was followed by a discussion on the complex response of cells to deal with genotoxic insult in complex, interconnected, and interdependent repair pathways. One of the major objectives of the workshop was to address the recurring question about the mechanistic and toxicological relevance of low-concentration measured adducts and the presentations in the session entitled "Can low levels of DNA adducts predict adverse outcomes?" served as catalysts for further discussions on this subject during the course of the workshop. Speakers representing the regulatory community and industry reviewed the value, current practices, and limitations of utilizing DNA adduct data in risk assessment and addressed a number of practical questions pertaining to these issues. While no consensus statement emerged on the biological significance of low levels of DNA adducts, the workshop concluded by identifying the need for more experimental data to address this important question. One of the recommendations stemming from this workshop was the need to develop an interim "decision-logic" or framework to guide the integration of DNA adduct data in the risk assessment process. HESI has recently formed a subcommittee consisting of experts in the field and other key stakeholders to address this recommendation as well as to identify specific research projects that could help advance the understanding of the biological significance of low levels of DNA adducts.


Assuntos
Biomarcadores/análise , Adutos de DNA/análise , Medição de Risco/métodos , Animais , Dano ao DNA , Exposição Ambiental/análise , Exposição Ambiental/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA