Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4705, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170106

RESUMO

Compromised microvascular reactivity underlies many conditions and injuries, but its assessment remains difficult, particularly in low perfusion tissues. In this paper, we develop a new mathematical model for the assessment of vasomodulation in low perfusion settings. A first-order model was developed to approximate changes in T1 relaxation times as a result of vasomodulation. Healthy adult rats (N = 6) were imaged on a 3-Tesla clinical MRI scanner, and vasoactive response was probed on gadofosveset using hypercapnic gases at 20% and 5% CO2 to induce vasoconstriction and vasodilation, respectively. MRI included dynamic 3D T1 mapping and T1-weighted images during gas challenge; heart rate was continuously monitored. Laser Doppler perfusion measurements were performed to corroborate MRI findings. The model was able to identify hypercapnia-mediated vasoconstriction and vasodilation through the partial derivative [Formula: see text]. MRI on animals revealed gradual vasoconstriction in the skeletal muscle bed in response to 20% CO2 followed by gradual vasodilation on transitioning to 5% CO2. These trends were confirmed on laser Doppler perfusion measurements. Our new mathematical model has the potential for detecting microvascular dysfunction that manifests in the early stages across multiple metabolic and ischemic pathologies.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Imageamento por Ressonância Magnética , Microcirculação , Modelos Biológicos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Algoritmos , Animais , Engenharia Biomédica , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Vasodilatação
2.
J Magn Reson Imaging ; 49(4): 1174-1185, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30302854

RESUMO

BACKGROUND: Ischemia-reperfusion (I/R) injury involves damage to the microvessel structure (eg, increased permeability) and function (blunted vasomodulation). While microstructural damage can be detected with dynamic contrast-enhanced (DCE) MRI, there is no diagnostic to detect deficits in microvascular function. PURPOSE: To apply a novel MRI method for evaluating dynamic vasomodulation to assess microvascular dysfunction in skeletal muscle following I/R injury. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: Twenty-three healthy male adult Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE: Dynamic T1 fast field echo imaging at 3.0T with preinjection T1 mapping. ASSESSMENT: Injury in the left hindlimb was induced using a 3-hour I/R procedure. Longitudinal MRI scanning was performed up to 74 days, with animals completing assessment at different intervals for histological and laser Doppler perfusion validation. Pharmacokinetic parameters Ktrans and ve were determined following i.v. injection of gadovist (0.1 mmol/kg). Vasomodulatory response was probed on gadofosveset (0.3 mmol/kg) using hypercapnic gases delivered through a controlled gas-mixing circuit to induce vasoconstriction and vasodilation in ventilated rats. Heart rate and blood oxygen saturation were monitored. STATISTICAL TESTS: Two-way analysis of variance with Tukey-Kramer post-hoc analysis was used to determine significant changes in vasomodulatory response, Ktrans , and ve . RESULTS: This new MRI technique revealed impaired vasomodulation in the injured hindlimb. Vasoconstriction was maintained, but vasodilation was blunted up to 21 days postinjury (P < 0.05). However, DCE-MRI measured Ktrans and ve were significantly (P < 0.05) different from baseline only during acute inflammation (Day 3), with severe inflammation noted on histology. DATA CONCLUSION: While conventional DCE-MRI shows normalization after the acute phase, our new approach reveals sustained functional impairment in muscle microvasculature following I/R injury, with compromised response in vasomotor tone present for at least 21 days. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1174-1185.


Assuntos
Extremidades/patologia , Isquemia/patologia , Microcirculação , Traumatismo por Reperfusão/patologia , Doença Aguda , Animais , Meios de Contraste/química , Gases , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Perfusão , Permeabilidade , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/diagnóstico por imagem
3.
Sci Rep ; 7(1): 7468, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784990

RESUMO

We present a novel, non-invasive magnetic resonance imaging (MRI) technique to assess real-time dynamic vasomodulation of the microvascular bed. Unlike existing perfusion imaging techniques, our method is sensitive only to blood volume and not flow velocity. Using graded gas challenges and a long-life, blood-pool T 1-reducing agent gadofosveset, we can sensitively assess microvascular volume response in the liver, kidney cortex, and paraspinal muscle to vasoactive stimuli (i.e. hypercapnia, hypoxia, and hypercapnic hypoxia). Healthy adult rats were imaged on a 3 Tesla scanner and cycled through 10-minute gas intervals to elicit vasoconstriction followed by vasodilatation. Quantitative T 1 relaxation time mapping was performed dynamically; heart rate and blood oxygen saturation were continuously monitored. Laser Doppler perfusion measurements confirmed MRI findings: dynamic changes in T 1 corresponded with perfusion changes to graded gas challenges. Our new technique uncovered differential microvascular response to gas stimuli in different organs: for example, mild hypercapnia vasodilates the kidney cortex but constricts muscle vasculature. Finally, we present a gas challenge protocol that produces a consistent vasoactive response and can be used to assess vasomodulatory capacity. Our imaging approach to monitor real-time vasomodulation may be extended to other imaging modalities and is valuable for investigating diseases where microvascular health is compromised.


Assuntos
Córtex Renal/irrigação sanguínea , Fígado/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Músculos Paraespinais/irrigação sanguínea , Animais , Volume Sanguíneo , Gadolínio/química , Frequência Cardíaca , Córtex Renal/diagnóstico por imagem , Fluxometria por Laser-Doppler , Fígado/diagnóstico por imagem , Microcirculação , Compostos Organometálicos/química , Oxigênio/metabolismo , Músculos Paraespinais/diagnóstico por imagem , Ratos , Vasoconstrição , Vasodilatação
4.
J Magn Reson Imaging ; 44(2): 305-16, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872559

RESUMO

PURPOSE: To characterize T2* and T1 relaxation time response to a wide spectrum of gas challenges in extracranial tissues of healthy rats. MATERIALS AND METHODS: A range of graded gas mixtures (hyperoxia, hypercapnia, hypoxia, and hypercapnic hypoxia) were delivered through a controlled gas-mixing circuit to mechanically ventilated and intubated rats. Quantitative magnetic resonance imaging (MRI) was performed on a 3T clinical scanner; T2* and T1 maps were computed to determine tissue response in the liver, kidney cortex, and paraspinal muscles. Heart rate and blood oxygen saturation (SaO2 ) were measured through a rodent oximeter and physiological monitor. RESULTS: T2* decreases consistent with lowered SaO2 measurements were observed for hypercapnia and hypoxia, but decreases were significant only in liver and kidney cortex (P < 0.05) for >10% CO2 and <15% O2 , with the new gas stimulus, hypercapnic hypoxia, producing the greatest T2* decrease. Hyperoxia-related T2* increases were accompanied by negligible increases in SaO2 . T1 generally increased, if at all, in the liver and decreased in the kidney. Significance was observed (P < 0.05) only in kidney for >90% O2 and >5% CO2 . CONCLUSION: T2* and T1 provide complementary roles for evaluating extracranial tissue response to a broad range of gas challenges. Based on both measured and known physiological responses, our results are consistent with T2* as a sensitive marker of blood oxygen saturation and T1 as a weak marker of blood volume changes. J. Magn. Reson. Imaging 2016;44:305-316.


Assuntos
Dióxido de Carbono/sangue , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Troca Gasosa Pulmonar/fisiologia , Vísceras/diagnóstico por imagem , Vísceras/metabolismo , Abdome/diagnóstico por imagem , Abdome/fisiologia , Animais , Desenho de Equipamento , Ratos , Ratos Sprague-Dawley , Respiração Artificial/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA