Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579531

RESUMO

The accumulation of potentially toxic elements in soil poses significant risks to ecosystems and human well-being due to their inherent toxicity, widespread presence, and persistence. The Kangdian metallogenic province, famous for its iron-copper deposits, faces soil pollution challenges due to various potentially toxic elements. This study explored a comprehensive approach that combinescombines the spatial prediction by the two-point machine learning method and ecological-health risk assessment to quantitatively assess the comprehensive potential ecological risk index (PERI), the total hazard index (THI) and the total carcinogenic risk (TCR). The proportions of copper (Cu), cadmium (Cd), manganese (Mn), lead (Pb), zinc (Zn), and arsenic (As) concentrations exceeding the risk screening values (RSVs) were 15.03%, 5.1%, 3.72%, 1.24%, 1.1%, and 0.13%, respectively, across the 725 collected samples. Spatial prediction revealed elevated levels of As, Cd, Cu, Pb, Zn, mercury (Hg), and Mn near the mining sites. Potentially toxic elements exert a slight impact on soil, some regions exhibit moderate to significant ecological risk, particularly in the southwest. Children face higher non-carcinogenic and carcinogenic health risks compared to adults. Mercury poses the highest ecological risk, while chromium (Cr) poses the greatest health hazard for all populations. Oral ingestion represents the highest non-oncogenic and oncogenic risks in all age groups. Adults faced acceptable non-carcinogenic risks. Children in the southwest region confront higher health risks, both non-carcinogenic and carcinogenic, from mining activities. Urgent measures are vital to mitigate Hg and Cr contamination while promoting handwashing practices is essential to minimize health risks.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , China , Metais Pesados/análise , Mineração , Criança , Adulto , Solo/química , Arsênio/análise
2.
Environ Pollut ; 252(Pt A): 501-510, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163383

RESUMO

Nitrogen is one of the most significant pollutants in the Yangtze River estuary (YRE), China. Reliable estimation of nitrogen concentration in the water is crucial for assessment of the water quality of the estuary. Because ocean fronts exist in the YRE, which divide water masses into different regions, it is necessary to account for the heterogeneity of the water surface when predicting nitrogen concentrations. A new geostatistical method, called spatiotemporal point mean of surface with non-homogeneity (ST-PMSN), is proposed to model the non-stationary spatiotemporal random process of nitrogen concentrations between 2004 and 2013 in the YRE. The method considers the spatiotemporal correlation of surface water nitrogen and uses information from both sides of a boundary for heterogeneous water masses. Comparing with several other interpolating methods, including spatial ordinary kriging (OK), stratified ordinary kriging (SOK), point mean of surface with non-homogeneity (P-MSN), spatiotemporal ordinary kriging (STK), and stratified spatiotemporal ordinary kriging (SSTK), the cross-validation results show that ST-PMSN has the highest accuracy, followed by SSTK, STK, P-MSN, SOK, and OK in descending order. ST-PMSN is therefore demonstrated to be effective in estimating the nitrogen pollutant concentrations in a stratified estuary. According to interpolated nitrogen concentrations in the YRE, water quality has generally deteriorated-with fluctuations-from 2004 to 2013. The average annual reduction in area of water quality of Grades I and II from 2004 to 2013 was 1.10%. At the same time, the average annual increase in area of water quality of Grades III and IV was 0.89% and that of Grade V was 0.21%. The results of this study provide a new and more accurate interpolating method for assessing the pollutant concentration in the marine and offers guidance for more precise classification of water quality in the YRE.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Rios/química , Análise Espacial , Poluentes Químicos da Água/análise , China , Estuários , Eutrofização , Poluição da Água/análise , Qualidade da Água
3.
Mar Pollut Bull ; 113(1-2): 216-223, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665325

RESUMO

Reliable assessment of water quality is a critical issue for estuaries. Nutrient concentrations show significant spatial distinctions between areas under the influence of fresh-sea water interaction and anthropogenic effects. For this situation, given the limitations of general mean estimation approaches, a new method for surfaces with non-homogeneity (MSN) was applied to obtain optimized linear unbiased estimations of the mean nutrient concentrations in the study area in the Yangtze estuary from 2011 to 2013. Other mean estimation methods, including block Kriging (BK), simple random sampling (SS) and stratified sampling (ST) inference, were applied simultaneously for comparison. Their performance was evaluated by estimation error. The results show that MSN had the highest accuracy, while SS had the highest estimation error. ST and BK were intermediate in terms of their performance. Thus, MSN is an appropriate method that can be adopted to reduce the uncertainty of mean pollutant estimation in estuaries.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/análise , China , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA