Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 253: 121315, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382289

RESUMO

The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.


Assuntos
Microalgas , Esgotos , Esgotos/química , Fósforo , Reatores Biológicos/microbiologia , Fosfatos , Bactérias , Nitrogênio , Carbono
2.
J Hazard Mater ; 179(1-3): 431-7, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20362391

RESUMO

Disintegrated aerobic granules (DAG) as an effective biosorbent had great potential to remove Cu(II) from aqueous solution. The effects of solution pH value, contact time, initial Cu(II) concentration on the biosorption were investigated. Kinetic studies indicate that pseudo-second-order model with correlation coefficients of 0.9999 best fits the Cu(II) biosorption process. Investigation of the biosorption mechanisms shows that Cu(II) biosorption is associated with a significant release of Ca(II). The adsorption capacity of extracted extracellular polymeric substances (EPS) was 2.34 times as much as that of pristine DAG, indicating the significant role of EPS in adsorption. In order to determine the role of different functional groups, DAG was chemically modified to block specific functional groups and was then used in the adsorption of Cu(II). The anionic carboxyl group, was identified as the key binding site for the cationic Cu(II). Results reveal that ion exchange is the most important biosorption mechanism but other mechanisms to some extent like electrostatic interaction, involving in functional groups, also play a part.


Assuntos
Cobre/química , Material Particulado/química , Adsorção , Aerobiose , Análise Custo-Benefício , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA