Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(11): 4510-4520, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36898018

RESUMO

Y18501 is a new oxysterol-binding protein inhibitor (OSBPI) that shows strong inhibitory activity against Pseudoperonospora cubensis. In this study, the sensitivities of 159 Ps. cubensis isolates to Y18501 were determined, with EC50 values ranging from 0.001 to 11.785 µg/mL, indicating that a Y18501-resistant subpopulation has appeared in the field. Ten Y18501-resistant mutants were obtained by fungicide adaptation and displayed fitness equal to or stronger than their parental isolates, which suggests that the resistance risk of Ps. cubensis to Y18501 is high. The consecutive applications of Y18501 in the field resulted in the rapid resistance of Ps. cubensis and decreased control efficacy of cucumber downy mildew (CDM), which could be alleviated by compounding with mancozeb. A positive cross-resistance was detected between Y18501 and oxathiapiprolin. The amino acid substitutions G705V, L798W, and I812F in PscORP1 conferred resistance to Y18501 in Ps. cubensis, which was validated by molecular docking and molecular dynamics simulations.


Assuntos
Oomicetos , Peronospora , Mutação Puntual , Simulação de Acoplamento Molecular , Doenças das Plantas/genética , Peronospora/genética
2.
Pest Manag Sci ; 78(4): 1448-1456, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34927349

RESUMO

BACKGROUND: Gray mold caused by Botrytis cinerea Pers. is one of the most significant airborne diseases. It can infest a wide range of crops, causing significant losses in yield and quality worldwide. Pydiflumetofen, a new generation succinate dehydrogenase inhibitor (SDHI), is currently being registered in China to control gray mold in a variety of crops. The baseline sensitivity, resistance risk, and resistance mechanism of Botrytis cinerea to pydiflumetofen were assessed in this study. RESULTS: A total of 138 strains of B. cinerea from 10 different regions were tested for their sensitivity to pydiflumetofen, and the mean EC50 value was 0.0056 µg mL-1 . Eight mutants were obtained by fungicide adaption from five sensitive parental isolates, and the resistance factor (RF) ranged from 51 to 135. The mutants exhibited strong adaptive traits in conidial production, conidial germination, and pathogenicity. Positive cross-resistance was only observed between other SDHIs (i.e. boscalid, fluopyram, and isopyrazam). Two different types of pydiflumetofen-resistant mutants were identified: point mutation P225L in sdhB and double mutation G85A and I93V in sdhC. The in vivo control efficacy of pydiflumetofen on the resistant mutants carrying P225L in sdhB as well as G85A and I93V in sdhC was significantly decreased to 52.62% and 32.27%, respectively. CONCLUSION: The fitness was significantly higher for all pydiflumetofen-resistant mutants than the corresponding parental. Two types of point mutations, sdhB-P225L and sdhC-G85A and I93V, might confer resistance to pydiflumetofen in B. cinerea. A precautionary resistance management strategy should be implemented. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Botrytis/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas , Mutação Puntual , Pirazóis , Medição de Risco , Succinato Desidrogenase/genética
3.
Pestic Biochem Physiol ; 180: 105006, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34955180

RESUMO

Pyraoxystrobin is a new QoI fungicide developed in China. The present study was aimed at determining the baseline sensitivity of M. oryzae to pyraoxystrobin and investigating the potential resistance risk and resistance mechanism of pyraoxystrobin in M. oryzae. The results showed that the mean EC50 of 109 M. oryzae isolates to pyraoxystrobin was 0.0094 µg/mL and the sensitivity exhibited a unimodal distribution. The established baseline sensitivity could provide critical data for monitoring sensitivity changes of M. oryzae to pyraoxystrobin in rice fields. The potential resistance risk was assessed by investigating the biological characteristics of the resistant mutants obtained by fungicide adaptation. The results indicated that the resistance risk of pyraoxystrobin in M. oryzae was medium to high with positive cross-resistance between pyraoxystrobin and azoxystrobin, but without cross resistance between pyraoxystrobin and carbendazim, isoprothiolane, and prochloraz. Further investigation revealed that the pyraoxystrobin-resistant mutants had a G143S mutation in the cyt b protein. Molecular docking confirmed that the G143S substitution conferred high resistance to pyraoxystrobin in M. oryzae. Collectively, the results of this study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for pyraoxystrobin.


Assuntos
Magnaporthe , Oryza , Acrilatos , Ascomicetos , Citocromos b/genética , Magnaporthe/genética , Simulação de Acoplamento Molecular , Doenças das Plantas , Mutação Puntual , Pirazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA