Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046173

RESUMO

Cardiovascular diseases are the leading cause of death around the world. As a result, low-cost biomedical sensors have been gaining importance in business and research over the last few decades. Their main benefits include their small size, light weight, portability and low power consumption. Despite these advantages, they are not generally used for clinical monitoring mainly because of their low accuracy in data acquisition. In this emerging technological context, this paper contributes by discussing a methodology to help practitioners build a prototype framework based on a low-cost commercial sensor. The resulting application consists of four modules; namely, a digitalization module whose input is an electrocardiograph signal in portable document format (PDF) or joint photographic expert group format (JPEG), a module to further process and filter the digitalized signal, a selectable data calibration module and, finally, a module implementing a classification algorithm to distinguish between individuals with normal sinus rhythms and those with atrial fibrillation. This last module employs our recently published symbolic recurrence quantification analysis (SRQA) algorithm on a time series of RR intervals. Moreover, we show that the algorithm applies to any biomedical low-cost sensor, achieving good results without requiring.


Assuntos
Algoritmos , Fibrilação Atrial/diagnóstico , Tecnologia Biomédica/economia , Tecnologia Biomédica/instrumentação , Custos e Análise de Custo , Adulto , Eletrocardiografia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
2.
Sensors (Basel) ; 20(3)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991890

RESUMO

Ascorbic Acid (AA) is a natural and powerful water-soluble antioxidant associated with long-lasting food products. As time passes, the AA content in products sharply decreases, and they become increasingly degraded. There are several techniques to precisely quantify AA concentrations. However, most of them employ costly laboratory instruments, such as High-Performance Liquid Chromatography (HPLC) or complex electrochemical methods, which make unfeasible recurrent AA measurements along the entire supply chain. To address this issue, we contribute with an in-field and real-time voltammetric method, carried out with a low-cost, easy-to-use, and portable device. An unmodified Screen-Printed Electrode (SPE) is used together with the device to achieve short reading times. Our method has been extensively tested in two multifruit juices using three different SPEs. Calibration curves and Limit of Detection were derived for each SPE. Furthermore, periodic experiments were conducted to study the shelf life of juices under consideration. During the analysis, a set of assays for each SPE were implemented to determine the remaining AA amount per juice and compare it with that obtained using HPLC under the same conditions. Results revealed that our cost-effective device is fully comparable to the HPLC equipment, as long as the juice does not include certain interferents; a scenario also contemplated in this article.


Assuntos
Ácido Ascórbico/análise , Técnicas Eletroquímicas/métodos , Análise de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Calibragem , Cromatografia Líquida de Alta Pressão , Análise Custo-Benefício , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Análise de Alimentos/economia , Análise de Alimentos/instrumentação , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA