Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Front Pediatr ; 9: 752247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869107

RESUMO

Objective: To understand which social, epidemiologic, and clinical risk factors are associated with SARS-CoV-2 infection in youth accessing care in a large, urban academic institution. Methods: We conducted a prospective cohort study with case-control analyses in youth who received testing for SARS-CoV-2 at our academic institution in Los Angeles during the first wave of the COVID-19 pandemic (March-September 2020). Results: A total of 27,976 SARS-CoV-2 assays among 11,922 youth aged 0-24 years were performed, including 475 youth with positive SARS-CoV-2 results. Positivity rate was higher among older, African American, and Hispanic/Latinx youth. Cases were more likely to be from non-English-speaking households and have safety-net insurance. Zip codes with higher proportion of Hispanic/Latinx and residents living under the poverty line were associated with increased SARS-CoV-2 cases. Youth were more likely to have positive results if tested for exposure (OR 21.5, 95% CI 14.6-32.1) or recent travel (OR 1.5, 95% CI 1.0-2.3). Students were less likely to have positive results than essential worker youth (OR 0.5, 95% CI 0.3-0.8). Patterns of symptom presentation varied significantly by age group; number of symptoms correlated significantly with age in SARS-CoV-2 cases (r = 0.030, p < 0.001). SARS-CoV-2 viral load did not vary by symptom severity, but asymptomatic youth had lower median viral load than those with symptoms (21.5 vs. 26.7, p = 0.009). Conclusions: Socioeconomic factors are important drivers of SARS-CoV-2 infection in youth. Presence of symptoms, exposure, and travel can be used to drive testing in older youth. Policies for school reopening and infection prevention should be tailored differently for elementary schools and universities.

3.
Clin Transl Gastroenterol ; 9(8): 177, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30177700

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is a common but largely preventable disease with suboptimal screening rates despite national guidelines to screen individuals age 50-75. Single-component interventions aimed to improve screening uptake only modestly improve rates; data suggest that multi-modal approaches may be more effective. METHODS: We designed, implemented, and evaluated the impact of a multi-modal intervention on CRC screening uptake among unscreened patients in a large managed care population. Patient-level components included a mailed letter with education about screening options and pre-colonoscopy telephone counseling. For providers, we facilitated communication of screening test results and work-flow for abnormal results. System-level modifications included establishment of a patient navigator, expedited work-up for abnormal results, and stream-lined colonoscopy scheduling. We measured the rate of screening uptake overall, screening uptake by modality, change in the proportion of the population screened, and positive fecal immunochemical test (FIT) follow-up rates in the 1-year study period. RESULTS: There were 5093 patients in the intervention cohort. Of these, 33.2% participated in FIT or colonoscopy screening within 1 year of the mailing. A total of 1078 (21.2%) participants completed a FIT and 611 (12.0%) completed a screening colonoscopy. The screening rate in the managed care population increased from 65.1 to 76.6%. Fifty-nine patients (5.5%) had a positive FIT, of which 30 (50.8%) completed a diagnostic colonoscopy. CONCLUSION: Multi-modal interventions can result in substantial improvement in CRC screening uptake in large and diverse managed care populations. TRANSLATIONAL IMPACT: Health systems should shift their focus from single-level to multi-level interventions when addressing barriers to CRC screening.


Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/normas , Programas de Assistência Gerenciada/organização & administração , Programas de Assistência Gerenciada/normas , Programas de Rastreamento/normas , Melhoria de Qualidade , Idoso , Agendamento de Consultas , Colonoscopia/estatística & dados numéricos , DNA de Neoplasias/análise , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/estatística & dados numéricos , Fezes/química , Feminino , Humanos , Imunoquímica/estatística & dados numéricos , Comunicação Interdisciplinar , Masculino , Programas de Rastreamento/métodos , Programas de Rastreamento/estatística & dados numéricos , Pessoa de Meia-Idade , Educação de Pacientes como Assunto/métodos , Navegação de Pacientes , Sistemas de Alerta , Telefone , Estados Unidos
4.
Anal Chem ; 90(15): 8881-8888, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004217

RESUMO

We present an approach to estimate the concentration of a biomolecule in a solution by sampling several nanoliter-scale volumes and determining if the volumes contain any biomolecules. In this method, varying volume fractions (nanoliter-scale) of a sample of nucleic acids are introduced to an array of uniform volume reaction wells (100 µL), which are then fluorescently imaged to determine if signal is above a threshold after nucleic acid amplification, all without complex instrumentation. The nanoliter volumes are generated and introduced using the simple positioning of a permanent magnet, and imaging is performed with a cellphone-based fluorescence detection scheme, both methods suitable for limited-resource settings. We use the length of time a magnetic field is applied to generate a calibrated number of nanoliter ferrodrops of sample mixed with ferrofluid at a step emulsification microfluidic junction. Each dose of ferrodrops is then transferred into larger microliter scale reaction wells on chip through a simple shift of the external magnet. Nucleic acid amplification is achieved using loop-mediated isothermal amplification (LAMP). By repeating each nanoliter dosage a number of times to calculate the probability of a positive signal at each dosage, we can use a binomial probability distribution to estimate the sample nucleic acid concentration. Using this approach we demonstrate detection of lambda DNA molecules down to 25 copies per microliter. The ability to dose separate nanoliter-scale volumes of a low-volume sample across wells in this platform is suited for multiplexed assays. This platform has the potential to be applied to a range of diseases by mixing a sample with magnetic nanoparticles.


Assuntos
DNA/análise , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Emulsões/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/economia , Técnicas de Amplificação de Ácido Nucleico/economia , Tamanho da Amostra
5.
ACS Nano ; 11(3): 2934-2943, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28234452

RESUMO

Key challenges with point-of-care (POC) nucleic acid tests include achieving a low-cost, portable form factor, and stable readout, while also retaining the same robust standards of benchtop lab-based tests. We addressed two crucial aspects of this problem, identifying a chemical additive, hydroxynaphthol blue, that both stabilizes and significantly enhances intercalator-based fluorescence readout of nucleic acid concentration, and developing a cost-effective fiber-optic bundle-based fluorescence microplate reader integrated onto a mobile phone. Using loop-mediated isothermal amplification on lambda DNA we achieve a 69-fold increase in signal above background, 20-fold higher than the gold standard, yielding an overall limit of detection of 25 copies/µL within an hour using our mobile-phone-based platform. Critical for a point-of-care system, we achieve a >60% increase in fluorescence stability as a function of temperature and time, obviating the need for manual baseline correction or secondary calibration dyes. This field-portable and cost-effective mobile-phone-based nucleic acid amplification and readout platform is broadly applicable to other real-time nucleic acid amplification tests by similarly modulating intercalating dye performance and is compatible with any fluorescence-based assay that can be run in a 96-well microplate format, making it especially valuable for POC and resource-limited settings.


Assuntos
Telefone Celular , DNA/análise , Substâncias Intercalantes/química , Naftalenossulfonatos/química , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Bacteriófago lambda/química , Telefone Celular/economia , Fluorescência , Estrutura Molecular , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito/economia , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/instrumentação
6.
Sci Rep ; 6: 39203, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976700

RESUMO

Routine antimicrobial susceptibility testing (AST) can prevent deaths due to bacteria and reduce the spread of multi-drug-resistance, but cannot be regularly performed in resource-limited-settings due to technological challenges, high-costs, and lack of trained professionals. We demonstrate an automated and cost-effective cellphone-based 96-well microtiter-plate (MTP) reader, capable of performing AST without the need for trained diagnosticians. Our system includes a 3D-printed smartphone attachment that holds and illuminates the MTP using a light-emitting-diode array. An inexpensive optical fiber-array enables the capture of the transmitted light of each well through the smartphone camera. A custom-designed application sends the captured image to a server to automatically determine well-turbidity, with results returned to the smartphone in ~1 minute. We tested this mobile-reader using MTPs prepared with 17 antibiotics targeting Gram-negative bacteria on clinical isolates of Klebsiella pneumoniae, containing highly-resistant antimicrobial profiles. Using 78 patient isolate test-plates, we demonstrated that our mobile-reader meets the FDA-defined AST criteria, with a well-turbidity detection accuracy of 98.21%, minimum-inhibitory-concentration accuracy of 95.12%, and a drug-susceptibility interpretation accuracy of 99.23%, with no very major errors. This mobile-reader could eliminate the need for trained diagnosticians to perform AST, reduce the cost-barrier for routine testing, and assist in spatio-temporal tracking of bacterial resistance.


Assuntos
Infecções por Bactérias Gram-Negativas/diagnóstico , Análise em Microsséries/métodos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Automação , Telefone Celular , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Ensaios de Triagem em Larga Escala , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Análise em Microsséries/economia , Análise em Microsséries/instrumentação , Testes de Sensibilidade Microbiana/economia , Testes de Sensibilidade Microbiana/instrumentação , Nefelometria e Turbidimetria
7.
ACS Nano ; 9(8): 7857-66, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26159546

RESUMO

Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed opto-mechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity.


Assuntos
Anticorpos Antivirais/sangue , Computadores de Mão/economia , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/sangue , Sistemas Automatizados de Assistência Junto ao Leito/economia , Telefone Celular/instrumentação , Colorimetria/economia , Colorimetria/instrumentação , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/instrumentação , Herpes Genital/sangue , Herpes Genital/diagnóstico , Herpes Genital/imunologia , Herpes Simples/sangue , Herpes Simples/diagnóstico , Herpes Simples/imunologia , Humanos , Aprendizado de Máquina , Sarampo/sangue , Sarampo/diagnóstico , Sarampo/imunologia , Aplicativos Móveis , Caxumba/sangue , Caxumba/diagnóstico , Caxumba/imunologia , Fibras Ópticas , Testes Imediatos , Sensibilidade e Especificidade
8.
J Clin Microbiol ; 53(7): 2349-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926486

RESUMO

Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification.


Assuntos
Bactérias/química , Bactérias/classificação , Técnicas Microbiológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/química , Leveduras/classificação , Humanos , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA