Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38589565

RESUMO

BACKGROUND: Statistical models of air pollution enable intra-urban characterization of pollutant concentrations, benefiting exposure assessment for environmental epidemiology. The new generation of low-cost sensors facilitate the deployment of dense monitoring networks and can potentially be used to improve intra-urban models of air pollution. OBJECTIVE: Develop and evaluate a spatiotemporal model for nitrogen dioxide (NO2) in the Puget Sound region of WA, USA for the Adult Changes in Thought Air Pollution (ACT-AP) study and assess the contribution of low-cost sensor data to the model's performance through cross-validation. METHODS: We developed a spatiotemporal NO2 model for the study region incorporating data from 11 agency locations, 364 supplementary monitoring locations, and 117 low-cost sensor (LCS) locations for the 1996-2020 time period. Model features included long-term time trends and dimension-reduced land use regression. We evaluated the contribution of LCS network data by comparing models fit with and without sensor data using cross-validated (CV) summary performance statistics. RESULTS: The best performing model had one time trend and geographic covariates summarized into three partial least squares components. The model, fit with LCS data, performed as well as other recent studies (agency cross-validation: CV- root mean square error (RMSE) = 2.5 ppb NO2; CV- coefficient of determination ( R 2 ) = 0.85). Predictions of NO2 concentrations developed with LCS were higher at residential locations compared to a model without LCS, especially in recent years. While LCS did not provide a strong performance gain at agency sites (CV-RMSE = 2.8 ppb NO2; CV- R 2 = 0.82 without LCS), at residential locations, the improvement was substantial, with RMSE = 3.8 ppb NO2 and R 2 = 0.08 (without LCS), compared to CV-RMSE = 2.8 ppb NO2 and CV- R 2 = 0.51 (with LCS). IMPACT: We developed a spatiotemporal model for nitrogen dioxide (NO2) pollution in Washington's Puget Sound region for epidemiologic exposure assessment for the Adult Changes in Thought Air Pollution study. We examined the impact of including low-cost sensor data in the NO2 model and found the additional spatial information the sensors provided predicted NO2 concentrations that were higher than without low-cost sensors, particularly in recent years. We did not observe a clear, substantial improvement in cross-validation performance over a similar model fit without low-cost sensor data; however, the prediction improvement with low-cost sensors at residential locations was substantial. The performance gains from low-cost sensors may have been attenuated due to spatial information provided by other supplementary monitoring data.

2.
Environ Pollut ; 343: 123227, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38147948

RESUMO

Determining the most feasible and cost-effective approaches to improving PM2.5 exposure assessment with low-cost monitors (LCMs) can considerably enhance the quality of its epidemiological inferences. We investigated features of fixed-site LCM designs that most impact PM2.5 exposure estimates to be used in long-term epidemiological inference for the Adult Changes in Thought Air Pollution (ACT-AP) study. We used ACT-AP collected and calibrated LCM PM2.5 measurements at the two-week level from April 2017 to September 2020 (N of monitors [measurements] = 82 [502]). We also acquired reference-grade PM2.5 measurements from January 2010 to September 2020 (N = 78 [6186]). We used a spatiotemporal modeling approach to predict PM2.5 exposures with either all LCM measurements or varying subsets with reduced temporal or spatial coverage. We evaluated the models based on a combination of cross-validation and external validation at locations of LCMs included in the models (N = 82), and also based on an independent external validation with a set of LCMs not used for the modeling (N = 30). We found that the model's performance declined substantially when LCM measurements were entirely excluded (spatiotemporal validation R2 [RMSE] = 0.69 [1.2 µg/m3]) compared to the model with all LCM measurements (0.84 [0.9 µg/m3]). Temporally, using the farthest apart measurements (i.e., the first and last) from each LCM resulted in the closest model's performance (0.79 [1.0 µg/m3]) to the model with all LCM data. The models with only the first or last measurement had decreased performance (0.77 [1.1 µg/m3]). Spatially, the model's performance decreased linearly to 0.74 (1.1 µg/m3) when only 10% of LCMs were included. Our analysis also showed that LCMs located in densely populated, road-proximate areas improved the model more than those placed in moderately populated, road-distant areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Projetos de Pesquisa
3.
Environ Health Perspect ; 131(7): 77004, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37404015

RESUMO

BACKGROUND: Growing evidence shows ultrafine particles (UFPs) are detrimental to cardiovascular, cerebrovascular, and respiratory health. Historically, racialized and low-income communities are exposed to higher concentrations of air pollution. OBJECTIVES: Our aim was to conduct a descriptive analysis of present-day air pollution exposure disparities in the greater Seattle, Washington, area by income, race, ethnicity, and historical redlining grade. We focused on UFPs (particle number count) and compared with black carbon, nitrogen dioxide, and fine particulate matter (PM2.5) levels. METHODS: We obtained race and ethnicity data from the 2010 U.S. Census, median household income data from the 2006-2010 American Community Survey, and Home Owners' Loan Corporation (HOLC) redlining data from the University of Richmond's Mapping Inequality. We predicted pollutant concentrations at block centroids from 2019 mobile monitoring data. The study region encompassed much of urban Seattle, with redlining analyses restricted to a smaller region. To analyze disparities, we calculated population-weighted mean exposures and regression analyses using a generalized estimating equation model to account for spatial correlation. RESULTS: Pollutant concentrations and disparities were largest for blocks with median household income of <$20,000, Black residents, HOLC Grade D, and ungraded industrial areas. UFP concentrations were 4% lower than average for non-Hispanic White residents and higher than average for racialized groups (Asian, 3%; Black, 15%; Hispanic, 6%; Native American, 8%; Pacific Islander, 11%). For blocks with median household incomes of <$20,000, UFP concentrations were 40% higher than average, whereas blocks with incomes of >$110,000 had UFP concentrations 16% lower than average. UFP concentrations were 28% higher for Grade D and 49% higher for ungraded industrial areas compared with Grade A. Disparities were highest for UFPs and lowest for PM2.5 exposure levels. DISCUSSION: Our study is one of the first to highlight large disparities with UFP exposures compared with multiple pollutants. Higher exposures to multiple air pollutants and their cumulative effects disproportionately impact historically marginalized groups. https://doi.org/10.1289/EHP11662.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Etnicidade , Pobreza
4.
Environ Health Perspect ; 130(9): 97008, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36169978

RESUMO

BACKGROUND: Based on human and animal experimental studies, exposure to ambient carbon monoxide (CO) may be associated with cardiovascular disease outcomes, but epidemiological evidence of this link is limited. The number and distribution of ground-level regulatory agency monitors are insufficient to characterize fine-scale variations in CO concentrations. OBJECTIVES: To develop a daily, high-resolution ambient CO exposure prediction model at the city scale. METHODS: We developed a CO prediction model in Baltimore, Maryland, based on a spatiotemporal statistical algorithm with regulatory agency monitoring data and measurements from calibrated low-cost gas monitors. We also evaluated the contribution of three novel parameters to model performance: high-resolution meteorological data, satellite remote sensing data, and copollutant (PM2.5, NO2, and NOx) concentrations. RESULTS: The CO model had spatial cross-validation (CV) R2 and root-mean-square error (RMSE) of 0.70 and 0.02 parts per million (ppm), respectively; the model had temporal CV R2 and RMSE of 0.61 and 0.04 ppm, respectively. The predictions revealed spatially resolved CO hot spots associated with population, traffic, and other nonroad emission sources (e.g., railroads and airport), as well as sharp concentration decreases within short distances from primary roads. DISCUSSION: The three novel parameters did not substantially improve model performance, suggesting that, on its own, our spatiotemporal modeling framework based on geographic features was reliable and robust. As low-cost air monitors become increasingly available, this approach to CO concentration modeling can be generalized to resource-restricted environments to facilitate comprehensive epidemiological research. https://doi.org/10.1289/EHP10889.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono , Monitoramento Ambiental , Humanos , Material Particulado/análise
5.
Environ Int ; 158: 106897, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601393

RESUMO

High-resolution, high-quality exposure modeling is critical for assessing the health effects of ambient PM2.5 in epidemiological studies. Using sparse regulatory PM2.5 measurements as principal model inputs may result in two issues in exposure prediction: (1) they may affect the models' accuracy in predicting PM2.5 spatial distribution; (2) the internal validation based on these measurements may not reliably reflect the model performance at locations of interest (e.g., a cohort's residential locations). In this study, we used the PM2.5 measurements from a publicly available commercial low-cost PM2.5 network, PurpleAir, with an external validation dataset at the residential locations of a representative sample of participants from the Adult Changes in Thought - Air Pollution (ACT-AP) study, to improve the accuracy of exposure prediction at the cohort participant locations. We also proposed a metric based on principal component analysis (PCA) - the PCA distance - to assess the similarity between monitor and cohort locations to guide monitor deployment and data selection. The analysis was based on a spatiotemporal modeling framework with 51 "gold-standard" monitors and 58 PurpleAir monitors for model development, as well as 105 home monitors at the cohort locations for model validation, in the Puget Sound region of Washington State from June 2017 to March 2019. After including calibrated PurpleAir measurements as part of the dependent variable, the external spatiotemporal validation R2 and root-mean-square error, RMSE, for two-week concentration averages improved from 0.84 and 2.22 µg/m3 to 0.92 and 1.63 µg/m3, respectively. The external spatial validation R2 and RMSE for long-term averages over the modeling period improved from 0.72 and 1.01 µg/m3 to 0.79 and 0.88 µg/m3, respectively. The exposure predictions incorporating PurpleAir measurements demonstrated sharper urban-suburban concentration gradients. The PurpleAir monitors with shorter PCA distances improved the model's prediction accuracy more substantially than the monitors with longer PCA distances, supporting the use of this similarity metric.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Estudos Epidemiológicos , Humanos , Material Particulado/análise
6.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205429

RESUMO

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)-which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monóxido de Carbono/análise , Monitoramento Ambiental , Estudos Epidemiológicos , Humanos , Óxido Nítrico/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise
7.
Am J Respir Crit Care Med ; 203(8): 987-997, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007162

RESUMO

Rationale: Black adults have worse health outcomes compared with white adults in certain chronic diseases, including chronic obstructive pulmonary disease (COPD).Objectives: To determine to what degree disadvantage by individual and neighborhood socioeconomic status (SES) may contribute to racial disparities in COPD outcomes.Methods: Individual and neighborhood-scale sociodemographic characteristics were determined in 2,649 current or former adult smokers with and without COPD at recruitment into SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study). We assessed whether racial differences in symptom, functional, and imaging outcomes (St. George's Respiratory Questionnaire, COPD Assessment Test score, modified Medical Research Council dyspnea scale, 6-minute-walk test distance, and computed tomography [CT] scan metrics) and severe exacerbation risk were explained by individual or neighborhood SES. Using generalized linear mixed model regression, we compared respiratory outcomes by race, adjusting for confounders and individual-level and neighborhood-level descriptors of SES both separately and sequentially.Measurements and Main Results: After adjusting for COPD risk factors, Black participants had significantly worse respiratory symptoms and quality of life (modified Medical Research Council scale, COPD Assessment Test, and St. George's Respiratory Questionnaire), higher risk of severe exacerbations and higher percentage of emphysema, thicker airways (internal perimeter of 10 mm), and more air trapping on CT metrics compared with white participants. In addition, the association between Black race and respiratory outcomes was attenuated but remained statistically significant after adjusting for individual-level SES, which explained up to 12-35% of racial disparities. Further adjustment showed that neighborhood-level SES explained another 26-54% of the racial disparities in respiratory outcomes. Even after accounting for both individual and neighborhood SES factors, Black individuals continued to have increased severe exacerbation risk and persistently worse CT outcomes (emphysema, air trapping, and airway wall thickness).Conclusions: Disadvantages by individual- and neighborhood-level SES each partly explain disparities in respiratory outcomes between Black individuals and white individuals. Strategies to narrow the gap in SES disadvantages may help to reduce race-related health disparities in COPD; however, further work is needed to identify additional risk factors contributing to persistent disparities.


Assuntos
Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde/estatística & dados numéricos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Fatores Raciais/estatística & dados numéricos , Fumar/efeitos adversos , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Classe Social , Fatores Socioeconômicos , Inquéritos e Questionários , População Branca/estatística & dados numéricos
8.
Environ Int ; 134: 105329, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783241

RESUMO

Low-cost air monitoring sensors are an appealing tool for assessing pollutants in environmental studies. Portable low-cost sensors hold promise to expand temporal and spatial coverage of air quality information. However, researchers have reported challenges in these sensors' operational quality. We evaluated the performance characteristics of two widely used sensors, the Plantower PMS A003 and Shinyei PPD42NS, for measuring fine particulate matter compared to reference methods, and developed regional calibration models for the Los Angeles, Chicago, New York, Baltimore, Minneapolis-St. Paul, Winston-Salem and Seattle metropolitan areas. Duplicate Plantower PMS A003 sensors demonstrated a high level of precision (averaged Pearson's r = 0.99), and compared with regulatory instruments, showed good accuracy (cross-validated R2 = 0.96, RMSE = 1.15 µg/m3 for daily averaged PM2.5 estimates in the Seattle region). Shinyei PPD42NS sensor results had lower precision (Pearson's r = 0.84) and accuracy (cross-validated R2 = 0.40, RMSE = 4.49 µg/m3). Region-specific Plantower PMS A003 models, calibrated with regulatory instruments and adjusted for temperature and relative humidity, demonstrated acceptable performance metrics for daily average measurements in the other six regions (R2 = 0.74-0.95, RMSE = 2.46-0.84 µg/m3). Applying the Seattle model to the other regions resulted in decreased performance (R2 = 0.67-0.84, RMSE = 3.41-1.67 µg/m3), likely due to differences in meteorological conditions and particle sources. We describean approach to metropolitan region-specific calibration models for low-cost sensors that can be used with cautionfor exposure measurement in epidemiological studies.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Modelos Teóricos , Material Particulado/análise , Baltimore , Calibragem , Chicago , Cidades , Estudos Epidemiológicos , Los Angeles , New York
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA