Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Toxics ; 9(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357907

RESUMO

Over the course of history, the development of human societies implied the exploitation of mineral resources which generated huge amounts of mining wastes leading to substantial environmental contamination by various metal(loid)s. This is especially the case of coal mine tailings which, subjected to weathering reactions, produce acid mine drainage (AMD), a recurring ecological issue related to current and past mining activities. In this study, we aimed to determine the origin, the fate and the ecotoxicity of metal(loid)s leached from a historical coal tailing heap to the Beuveroux river (Franche-Comté, France) using a combination of mineralogical, chemical and biological approaches. In the constitutive materials of the tailings, we identified galena, tetrahedrite and bournonite as metal-rich minerals and their weathering has led to massive contamination of the water and suspended particles of the river bordering the heap. The ecotoxicity of the AMD has been assessed using Chironomus riparius larvae encaged in the field during a one-month biomonitoring campaign. The larvae showed lethal and sub-lethal (growth and emergence inhibition and delay) impairments at the AMD tributary and near downstream stations. Metal bioaccumulation and subcellular fractionation in the larvae tissues revealed a strong bioavailability of, notably, As, Pb and Tl explaining the observed biological responses. Thus, more than 70 years after the end of mining operations, the coal tailings remain a chronic source of contamination and environmental risks in AMD effluent receiving waters.

2.
J Hazard Mater ; 393: 122369, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32114131

RESUMO

Mineral resource exploitation by human societies throughout history led to the deposit of mining and smelting wastes and the subsequent contamination of surrounding soils by trace metals. After several centuries, the impact of these legacy hazardous wastes may remain a cause of environmental concern, especially for indigenous soil invertebrate populations such as earthworms. Therefore, we conducted a passive biomonitoring campaign in a former metallurgical district (Vosges Mountains, eastern France). According to community descriptors, we evidenced a significant decrease of anecic and endogeic earthworm density in the former mining stations. To link these results to soil contamination and bioaccumulation levels in earthworm tissues, we propose an original modelling approach using nonlinear mixed-effects regression models. Beyond a dose-response relationship between metal internal concentrations and their levels in soils, we highlighted contrasted behaviors according to ecological groups (epianecics and endogeics most impacted). We interpreted these results in relation to some eco-physiological features without completely exclude the influence of textural characteristics of soil, especially for deep-burrowing species such as anecic strict. Nonetheless, the presence of earthworm populations currently living in highly contaminated sites and handling elevated internal concentrations raises the question of the acquisition of genetic adaptive traits and the trophic transfers of metals.


Assuntos
Resíduos Industriais/efeitos adversos , Metais Pesados/toxicidade , Mineração , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Bioacumulação , Monitoramento Biológico , Monitoramento Ambiental , Metais Pesados/análise , Metais Pesados/metabolismo , Oligoquetos/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA