Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169756, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38171460

RESUMO

Triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) are common organophosphate esters (OPEs), which are used as additives in various industries. These compounds have been widely detected in aquatic environment, raising concerns about their adverse effects on aquatic organisms. In order to protect aquatic ecosystems, a total of 7 species were selected for acute and chronic toxicity tests in this study. The results indicated that TPhP and TDCIPP exhibited varying degrees of toxicity to aquatic organisms. The 96-h LC50 values ranged from 1.088 mg/L to 1.574 mg/L for TPhP and from 2.027 mg/L to 17.855 mg/L for TDCIPP. The 28-d LC10 values ranged from 0.023 mg/L to 0.177 mg/L for TPhP and from 0.300 mg/L to 1.102 mg/L for TDCIPP. The tested toxicity data, combined with collected toxicity data, were used to investigate the predicted no-effect concentration in water (PNECwater) of TPhP and TDCIPP by species sensitivity distribution (SSD) method. The results revealed PNECwater values of 6.35 and 38.0 µg/L for TPhP and TDCIPP, respectively. Furthermore, the predicted no-effect concentrations in sediment (PNECsed) were derived as 110 µg/kg dry weight (dw) for TPhP and 424 µg/kg dw for TDCIPP using the equilibrium partitioning (EqP) approach. Based on the toxicity data and PNECs, the ecological risk of these two chemicals in surface waters and sediments worldwide over the last decade were evaluated. The results indicated that TDCIPP posed negligible risk in aquatic ecosystems. However, TPhP showed potential risk in sediments, as indicated by the hazard quotients (HQs) exceeding 0.1. The results of joint probability curves (JPC) indicated that the probabilities of exceeding hazardous concentration for 1 % of species for TPhP in water and sediment were 0.33 % and 5.2 %, respectively. Overall, these findings highlight the need for continued monitoring and assessment of the presence and potential impacts of TPhP and TDCIPP in aquatic ecosystems.


Assuntos
Retardadores de Chama , Fosfatos , Fosfatos/toxicidade , Ecossistema , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Organofosfatos/toxicidade , Água , Medição de Risco , Organismos Aquáticos , Ésteres
2.
Adv Sci (Weinh) ; 10(20): e2206982, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150855

RESUMO

Hand dysfunctions in Parkinson's disease include rigidity, muscle weakness, and tremor, which can severely affect the patient's daily life. Herein, a multimodal sensor glove is developed for quantifying the severity of Parkinson's disease symptoms in patients' hands while assessing the hands' multifunctionality. Toward signal processing, various algorithms are used to quantify and analyze each signal: Exponentially Weighted Average algorithm and Kalman filter are used to filter out noise, normalization to process bending signals, K-Means Cluster Analysis to classify muscle strength grades, and Back Propagation Neural Network to identify and classify tremor signals with an accuracy of 95.83%. Given the compelling features, the flexibility, muscle strength, and stability assessed by the glove and the clinical observations are proved to be highly consistent with Kappa values of 0.833, 0.867, and 0.937, respectively. The intraclass correlation coefficients obtained by reliability evaluation experiments for the three assessments are greater than 0.9, indicating that the system is reliable. The glove can be applied to assist in formulating targeted rehabilitation treatments and improve hand recovery efficiency.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Tremor/diagnóstico , Tremor/terapia , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Mãos
3.
Environ Geochem Health ; 45(6): 3669-3682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36474059

RESUMO

Pentachlorophenol (PCP) has been widely used as an insecticide for killing oncomelania (the intermediate host of schistosome) in China and leads to severe environmental contamination. Poyang Lake, as the largest freshwater lake and bird habitat in China, was once a schistosomiasis epidemic area. In this study, the concentrations of PCP in water and aquatic products from Poyang Lake were determined and analyzed, and then the human health ambient water quality criteria (AWQC) was derived based on native parameters of Poyang Lake basin. Finally, a comprehensive analysis of the health risks of drinking water and different types of aquatic products consumption was carried out. The results showed that PCP concentrations were ranged from 0.01 to 0.43 µg/L in surface water and 3.90 to 85.95 µg/kg in aquatic products. Due to the carcinogenicity of PCP, the human health AWQC for PCP are 0.02 µg/L for consumption of water and organisms and 0.03 µg/L for consumption of organisms only. Deterministic and probabilistic risk analysis indicated that the non-carcinogenic risk of PCP were acceptable in Poyang Lake, while the carcinogenic risk cannot be ignored. The health risks of PCP caused by aquatic products consumption were higher than that by drinking water. The percentages of acceptable risk for the population in Poyang Lake Basin were 99.95% at acceptable level of 10-4. Based on the sensitivity analysis, the impact of PCP concentrations on health risk values ranged from 53 to 82%. The study provided valuable information for regional water quality criteria development and water quality assessment.


Assuntos
Água Potável , Pentaclorofenol , Humanos , Qualidade da Água , Lagos/análise , Pentaclorofenol/toxicidade , Pentaclorofenol/análise , Água Potável/análise , Medição de Risco , China/epidemiologia , Monitoramento Ambiental/métodos
4.
Huan Jing Ke Xue ; 42(3): 1354-1360, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742932

RESUMO

Phenol is widely used in the production of insulation and thermal insulation materials, adhesives, perfumes, coatings for food containers, paints, and pharmaceutical production, and is also widely detected in the aquatic environment. Long-term exposure to phenol can elicit adverse effects, such as skin burn, liver and central system damage. Here, phenol concentrations in the water and aquatic products of Poyang Lake were investigated. Human health risks from phenol to adults and adolescents were also assessed based on local population exposure parameters. The exposure concentration range of phenol in the studied water and aquatic products was not detected (ND)-556.26 ng·L-1 and 11.98-255.51 µg·kg-1, respectively. Human health risk based on drinking water in different areas ranged from 3.80×10-7-8.46×10-5. Higher human health risks from drinking water was detected in the southern area of Poyang Lake and at the confluence of the Yangtze River to the north. Health risks caused by different types of aquatic products ranges 2.65×10-5-1.47×10-4. In particular, human health risks from the consumption of yellow catfish and catfish are an order of magnitude higher than for other aquatic products. Probabilistic risk assessment was also conducted through Monte Carlo simulation to analyze the health risk to the population in the Poyang Lake Basin and assess its sensitivity of different exposure parameters. The 95th percentile health risk of drinking water and aquatic product consumption in the Poyang Lake Basin was calculated as being acceptable. Overall, the concentrations of phenol had the greatest impact on the calculated health risk values. This study provides valuable information for phenol risk management in the Poyang Lake basin.


Assuntos
Lagos , Fenol , Adolescente , China , Monitoramento Ambiental , Humanos , Lagos/análise , Medição de Risco , Rios , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA