Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 136: 451-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923455

RESUMO

Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.


Assuntos
Dieta , Ecossistema , Oligoelementos , Animais , Humanos , Dieta/efeitos adversos , População do Leste Asiático , Metais/análise , Medição de Risco , Oligoelementos/análise
2.
Sci Total Environ ; 828: 154119, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227721

RESUMO

The widespread use of rare earth elements (REEs) in agriculture and high-tech industry resulted in significant release of REEs into the environment. However, there is a scarcity of studies focusing on the presence of REEs in the food worldwide. The present study investigated the residual levels of REEs in 14 representative food categories collected from 33 major cities of China. The measured total REEs (ΣREE) levels in the foods of aquatic origin were 174.97 µg kg-1 wet weight (ww), which was 6.35 times higher than those of terrestrial origin. It is interesting to observe a trophic dilution effect for REEs in both terrestrial and aquatic food samples. REEs in food samples at low trophic levels exhibited relatively high REEs levels; while for high trophic level food, relatively low REEs levels were observed. The distribution patterns of REEs varied across the different food categories and regions, with Ce being the most abundant REEs in all food samples, followed by La, Nd and Sm. High levels of ΣREE in food samples were observed in Midland, while low levels were found in the Northeast. Cereals was the dominant contributor to the estimated daily intake of REEs. The health risk of REEs by daily food consumption in China was acceptable.


Assuntos
Metais Terras Raras , Agricultura , China , Dieta , Metais Terras Raras/análise , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA