Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 62(18): 7532-7555, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28796643

RESUMO

Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the [Formula: see text] and [Formula: see text] correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the [Formula: see text] correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. [Formula: see text] values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to [Formula: see text] corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit [Formula: see text] correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit [Formula: see text] results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes' frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Fótons/uso terapêutico , Radiocirurgia/métodos , Elétrons , Humanos , Radiometria/métodos , Água
2.
Phys Med Biol ; 61(3): 1182-203, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26788618

RESUMO

This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the (60)Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources' stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results.


Assuntos
Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Radiometria/métodos
3.
Radiat Prot Dosimetry ; 172(4): 409-415, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26656074

RESUMO

The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (HT) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy-1 m-2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures.


Assuntos
Quimioembolização Terapêutica , Neoplasias Hepáticas/terapia , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Humanos , Prognóstico , Dosagem Radioterapêutica
4.
Science ; 349(6248): 638-43, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26250684

RESUMO

Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term.


Assuntos
Inundações/economia , Inundações/estatística & dados numéricos , Rios , Previsões , Humanos , Investimentos em Saúde , Risco
5.
Radiat Prot Dosimetry ; 165(1-4): 369-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25836682

RESUMO

Mammography is a standard procedure that facilitates breast cancer detection. Initial results of contrast-enhanced digital mammography (CEDM) are promising. The purpose of this study is to assess the CEDM radiation dose using a Monte Carlo code. EGSnrc MC code was used to simulate the interaction of photons with matter and estimate the glandular dose (Dg). A voxel female human phantom with a 2-8-cm breast thickness range and a breast glandular composition of 50 % was applied. Dg values ranged between 0.96 and 1.45 mGy (low and high energy). Dg values for a breast thickness of 5.0 cm and a glandular fraction of 50 % for craniocaudal and mediolateral oblique view were 1.12 (low energy image contribution is 0.98 mGy) and 1.07 (low energy image contribution is 0.95 mGy), respectively. The low kV part of CEDM is the main contributor to total glandular breast dose.


Assuntos
Absorciometria de Fóton/métodos , Meios de Contraste , Mamografia/métodos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Adulto , Ar , Mama/patologia , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Neovascularização Patológica , Doses de Radiação , Radiometria
6.
Phys Med ; 31(7): 785-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25900891

RESUMO

PURPOSE: To estimate the mean glandular dose of contrast enhanced digital mammography, using the EGSnrc Monte Carlo code and female adult voxel phantom. METHODS: Automatic exposure control of full field digital mammography system was used for the selection of the X-ray spectrum and the exposure settings for dual energy imaging. Measurements of the air-kerma and of the half value layers were performed and a Monte Carlo simulation of the digital mammography system was used to compute the mean glandular dose, for breast phantoms of various thicknesses, glandularities and for different X-ray spectra (low and high energy). RESULTS: For breast phantoms of 2.0-8.0 cm thick and 0.1-100% glandular fraction, CC view acquisition, from AEC settings, can result in a mean glandular dose of 0.450 ± 0.022 mGy -2.575 ± 0.033 mGy for low energy images and 0.061 ± 0.021 mGy - 0.232 ± 0.033 mGy for high energy images. In MLO view acquisition mean glandular dose values ranged between 0.488 ± 0.007 mGy - 2.080 ± 0.021 mGy for low energy images and 0.065 ± 0.012 mGy - 0.215 ± 0.010 mGy for high energy images. CONCLUSION: The low kV part of contrast enhanced digital mammography is the main contributor to total mean glandular breast dose. The results of this study can be used to provide an estimated mean glandular dose for individual cases.


Assuntos
Meios de Contraste , Mamografia/instrumentação , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Intensificação de Imagem Radiográfica/instrumentação , Adulto , Feminino , Humanos , Radiometria
7.
Radiat Prot Dosimetry ; 163(2): 202-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24876338

RESUMO

Radiation protection and estimation of the radiological risk in paediatric radiology is essential due to children's significant radiosensitivity and their greater overall health risk. The purpose of this study was to estimate the organ and effective doses of paediatric patients undergoing barium meal (BM) examinations and also to evaluate the assessment of radiation Risk of Exposure Induced cancer Death (REID) to paediatric patients undergoing BM examinations. During the BM studies, fluoroscopy and multiple radiographs are involved. Since direct measurements of the dose in each organ are very difficult if possible at all, clinical measurements of dose-area products (DAPs) and the PCXMC 2.0 Monte Carlo code were involved. In clinical measurements, DAPs were assessed during examination of 51 patients undergoing BM examinations, separated almost equally in three age categories, neonatal, 1- and 5-y old. Organs receiving the highest amounts of radiation during BM examinations were as follows: the stomach (10.4, 10.2 and 11.1 mGy), the gall bladder (7.1, 5.8 and 5.2 mGy) and the spleen (7.5, 8.2 and 4.3 mGy). The three values in the brackets correspond to neonatal, 1- and 5-y-old patients, respectively. For all ages, the main contributors to the total organ and effective doses are the fluoroscopy projections. The average DAP values and absorbed doses to patient were higher for the left lateral projections. The REID was calculated for boys (4.8 × 10(-2), 3.0 × 10(-2) and 2.0 × 10(-2) %) for neonatal, 1- and 5-y old patients, respectively. The corresponding values for girl patients were calculated (12.1 × 10(-2), 5.5 × 10(-2) and 3.4 × 10(-2) %).


Assuntos
Envelhecimento/fisiologia , Fluoroscopia , Modelos Estatísticos , Doses de Radiação , Vísceras/fisiologia , Contagem Corporal Total/métodos , Absorção de Radiação , Administração Oral , Bário/administração & dosagem , Pré-Escolar , Simulação por Computador , Meios de Contraste/administração & dosagem , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Especificidade de Órgãos/fisiologia , Software
8.
Phys Med ; 30(4): 432-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24374260

RESUMO

OBJECTIVES: To estimate the organ equivalent doses and the effective doses (E) in patient undergoing percutaneous transhepatic biliary drainage (PTBD) examinations, using the MCNP5 and PCXMC2 Monte Carlo-based codes. METHODS: The purpose of this study is to estimate the organ doses to patients undergoing PTBD examinations by clinical measurements and Monte Carlo simulation. Dose area products (DAP) values were assessed during examination of 43 patients undergoing PTBD examination separated into groups based on the gender and the dimensions and location of the beam. RESULTS: Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 and PCXMC2 codes in order to estimate equivalent organ doses. Regarding the PTBD examination the organ receiving the maximum radiation dose was the lumbar spine. The mean calculated HT for the lumbar spine using the MCNP5 and PCXMC2 methods respectively, was 117.25 mSv and 131.7 mSv, in males. The corresponding doses were 139.45 mSv and 157.1 mSv respectively in females. The HT values for organs receiving considerable amounts of radiation during PTBD examinations were varied between 0.16% and 73.2% for the male group and between 1.10% and 77.6% for the female group. E in females and males using MCNP5 and PCXMC2.0 was 5.88 mSv and 6.77 mSv, and 4.93 mSv and 5.60 mSv. CONCLUSION: The doses remain high compared to other invasive operations in interventional radiology. There is a reasonable good coincidence between the MCNP5 and PCXMC2.0 calculation for most of the organs.


Assuntos
Angiografia/métodos , Ductos Biliares/cirurgia , Colangiografia/métodos , Drenagem/métodos , Método de Monte Carlo , Doses de Radiação , Angiografia/efeitos adversos , Colangiografia/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
9.
Med Phys ; 40(3): 031704, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23464299

RESUMO

PURPOSE: This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. METHODS: A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a "control point" in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. RESULTS: MR spatial distortions stemming from main field (B0) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total geometric uncertainty ranged from 0.34 to 0.80 mm. The average total geometric uncertainty, which also includes the GK spatial dose delivery uncertainty, was found equal to (0.88 ± 0.16), (0.88 ± 0.26), (1.02 ± 0.09), and (1.15 ± 0.24) mm for the MR image series acquired with the read gradient polarity (direction) set toward right, left, posterior, and anterior, respectively. CONCLUSIONS: The implemented methodology seems capable of assessing the total geometric uncertainty, as well as of characterizing its contributors, ascribed to the entire GK treatment delivery (i.e., from MR imaging to GK dose delivery) for an extended region of the Leksell stereotactic space. Results obtained indicate that the selection of both the frequency encoding axis and the read gradient polarity during MRI acquisition may affect the magnitude as well as the spatial components of the total geometric uncertainty.


Assuntos
Imagens de Fantasmas , Polimetil Metacrilato/química , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Incerteza , Géis , Imageamento por Ressonância Magnética
10.
Med Phys ; 40(1): 011712, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23298082

RESUMO

PURPOSE: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. METHODS: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. RESULTS: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. CONCLUSIONS: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Modelos Anatômicos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Simulação por Computador , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/radioterapia , Feminino , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica
11.
Med Phys ; 38(4): 1981-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21626931

RESUMO

PURPOSE: The aim of this work is the dosimetric validation of a deterministic radiation transport based treatment planning system (BRACHYVISION v. 8.8, referred to as TPS in the following) for multiple 192Ir source dwell position brachytherapy applications employing a shielded applicator in homogeneous water geometries. METHODS: TPS calculations for an irradiation plan employing seven VS2000 192Ir high dose rate (HDR) source dwell positions and a partially shielded applicator (GM11004380) were compared to corresponding Monte Carlo (MC) simulation results, as well as experimental results obtained using the VIP polymer gel-magnetic resonance imaging three-dimensional dosimetry method with a custom made phantom. RESULTS: TPS and MC dose distributions were found in agreement which is mainly within +/- 2%. Considerable differences between TPS and MC results (greater than 2%) were observed at points in the penumbra of the shields (i.e., close to the edges of the "shielded" segment of the geometries). These differences were experimentally verified and therefore attributed to the TPS. Apart from these regions, experimental and TPS dose distributions were found in agreement within 2 mm distance to agreement and 5% dose difference criteria. As shown in this work, these results mark a significant improvement relative to dosimetry algorithms that disregard the presence of the shielded applicator since the use of the latter leads to dosimetry errors on the order of 20%-30% at the edge of the "unshielded" segment of the geometry and even 2%-6% at points corresponding to the potential location of the target volume in clinical applications using the applicator (points in the unshielded segment at short distances from the applicator). CONCLUSIONS: Results of this work attest the capability of the TPS to accurately account for the scatter conditions and the increased attenuation involved in HDR brachytherapy applications employing multiple source dwell positions and partially shielded applicators.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Proteção Radiológica/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Braquiterapia/instrumentação , Radiometria , Reprodutibilidade dos Testes
12.
Phys Med Biol ; 56(2): 367-82, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21178238

RESUMO

Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87, 2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54, 1.8, 3.1 mSv), the small intestines (1.34, 1.56, 2.78 mSv), the stomach (1.46, 1.02, 2.01 mSv) and the gall bladder (1.46, 1.66, 2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies.


Assuntos
Bário , Sistema Digestório/diagnóstico por imagem , Método de Monte Carlo , Doenças da Bexiga Urinária/diagnóstico por imagem , Urografia/métodos , Bário/administração & dosagem , Carga Corporal (Radioterapia) , Pré-Escolar , Simulação por Computador , Meios de Contraste/administração & dosagem , Sistema Digestório/patologia , Feminino , Fluoroscopia/métodos , Fluoroscopia/normas , Humanos , Lactente , Recém-Nascido , Masculino , Especificidade de Órgãos , Doses de Radiação , Proteção Radiológica , Uretra/diagnóstico por imagem , Uretra/patologia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/patologia , Doenças da Bexiga Urinária/patologia , Urografia/normas
13.
Med Phys ; 37(5): 2369-79, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527571

RESUMO

PURPOSE: The aim of this work is to implement a recently proposed dosimetric formalism for nonstandard fields to the calibration and small field output factor measurement of a robotic stereotactic radiosurgery system. METHODS: Reference dosimetry measurements were performed in the nonstandard, 60 mm diameter machine specific reference (msr) field using a Farmer ion chamber, five other cylindrical chambers with cavity lengths ranging from 16.25 down to 2.7 mm, and alanine dosimeters. Output factor measurements were performed for the 5, 7.5, 10, and 15 mm field sizes using microchambers, diode detectors, alanine dosimeters, TLD microcubes, and EBT Gafchromic films. Measurement correction factors as described in the proposed formalism were calculated for the ion chamber and diode detector output factor measurements based on published Monte Carlo data. Corresponding volume averaging correction factors were calculated for the alanine output factor measurements using 3D dose distributions, measured with polymer gel dosimeters. RESULTS: Farmer chamber and alanine reference dosimetry results were found in close agreement, yielding a correction factor of k(Q(msr),Q)(f(msr),f(ref)) = 0.999 +/- 0.016 for the chamber readings. These results were also found to be in agreement within experimental uncertainties with corresponding results obtained using the shorter cavity length ionization chambers. The mean measured dose values of the latter, however, were found to be consistently greater than that of the Farmer chamber. This finding, combined with an observed inverse relationship between the mean measured dose and chamber cavity length that follows the trend predicted by theoretical volume averaging calculations in the msr field, implies that the Farmer k(Q(msr),Q)(f(msr),f(ref)) correction is greater than unity. Regarding the output factor results, deviations as large as 33% were observed between the different dosimeters used. These deviations were substantially decreased when appropriate correction factors were applied to the measured microchamber, diode, and alanine values. After correction, all diode and microchamber measured output factors agreed within 1.6% with the corresponding alanine measurements, and within 3.1% with the TLD measurements. The weighted mean output factors were 0.681 +/- 0.001, 0.824 +/- 0.001, 0.875 +/- 0.001, and 0.954 +/- 0.001 for the 5, 7.5, 10, and 15 mm beams, respectively. CONCLUSIONS: The comparison of Farmer chamber measurements versus alanine reference dosimetry validates the use of the former for dosimetry in the msr field of this treatment delivery system. The corresponding results of this work obtained using chambers with different cavity lengths, combined with previous literature findings, suggest that a k(Q(msr),Q)(f(msr),f(ref)) Farmer chamber dose response correction factor of 1.01 may improve calibration measurement accuracy when using the proposed dosimetric formalism. The k(Q(msr),Q)(f(msr),f(ref)) correction factor is within 0.5% from unity for ion chambers with cavity lengths less than 10 mm. Substantial improvements in small field output factor measurement accuracy can be obtained when using microchambers and diodes by applying appropriately calculated correction factors to the detector measurements according to the proposed dosimetric formalism, and their routine use is therefore recommended.


Assuntos
Radiocirurgia/métodos , Robótica , Calibragem , Método de Monte Carlo , Doses de Radiação , Radiometria , Incerteza , Água
14.
Med Phys ; 36(9): 4277-87, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810502

RESUMO

PURPOSE: Water equivalent polymer gel dosimeters and magnetic resonance imaging were employed to measure the output factors of the two smallest treatment fields available in a Gamma Knife model C radiosurgery unit, those formed employing the 4 and 8 mm final collimator helmets. METHODS: Three samples of the VIP normoxic gel formulation were prepared and irradiated so that a single shot of the field whose output factor is to be measured and a single shot of the reference 18 mm field were delivered in each one. Emphasis is given to the development and benchmarking of a refined data processing methodology of reduced uncertainty that fully exploits the 3D dose distributions registered in the dosimeters. RESULTS: Polymer gel results for the output factor of the 8 mm collimator helmet are found to be in close agreement with the corresponding value recommended by the vendor (0.955 +/- 0.007 versus 0.956, respectively). For the 4 mm collimator helmet, however, polymer gel results suggest an output factor 3% lower than the value recommended by the vendor (0.841 +/- 0.009 versus 0.870, respectively). CONCLUSIONS: A comparison with corresponding measurements published in the literature indicates that output factor results of this work are in agreement with those obtained using dosimetric systems which, besides fine spatial resolution and lack of angular and dose rate dependence of the dosimeter's response, share with polymer gels the favorable characteristic of minimal radiation field perturbation.


Assuntos
Radiometria/métodos , Radiocirurgia , Dosagem Radioterapêutica , Simulação por Computador , Géis/efeitos da radiação , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Imagens de Fantasmas , Polímeros/efeitos da radiação , Doses de Radiação , Incerteza
15.
Health Phys ; 94(5): 471-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403968

RESUMO

The radiation exposures of children undergoing full spine radiography were investigated in two pediatric hospitals in Greece. Entrance surface kerma (Ka,e) was assessed by thermoluminescence dosimetry and patient's effective dose (E) was estimated by Monte Carlo simulation. All required information regarding patient age and sex, the irradiation geometry, the x-ray spectra, and other exposure parameters (tube voltage and current) were registered as well. Values of Ka,e were measured to range from 0.22 mGy to 2.12 mGy, while E was estimated to range from 0.03 mSv to 0.47 mSv. In general, all values were greater in one of the two hospitals, as higher tube currents and exposure times were used in the examinations because of the difference in radiographers' training and practice. Moreover, dose to red bone marrow was found to be between 0.01 to 0.23 mSv and dose to breast ranged between 0.02 and 1.05 mSv depending on the age, projection, and hospital. These values are comparable with literature sources.


Assuntos
Simulação por Computador , Hospitais Pediátricos , Método de Monte Carlo , Doses de Radiação , Radiometria , Escoliose/diagnóstico por imagem , Raios X , Carga Corporal (Radioterapia) , Medula Óssea/diagnóstico por imagem , Mama/efeitos da radiação , Criança , Pré-Escolar , Grécia , Humanos , Radiografia , Radiometria/efeitos adversos , Radiometria/métodos , Radiometria/estatística & dados numéricos , Medição de Risco
16.
Med Phys ; 34(9): 3614-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17926965

RESUMO

Ample literature exists on the dose overestimation by commercially available treatment planning systems in MammoSite applications using high dose rate 192Ir sources for partial breast brachytherapy as monotherapy, due to their inability to predict the dose reduction caused by the radiographic contrast solution in the balloon catheter. In this work Monte Carlo simulation is used to verify the dose rate reduction in a balloon breast applicator which does not vary significantly with distance and it is 1.2% at the prescription distance for the reference simulated geometry of 10% diluted radiographic contrast media and 2.5 cm balloon radius. Based on these findings and the minimal hardening of the initially emitted photon spectrum for 192Ir, a simple analytical method is proposed and shown capable for correcting dosimetry planning in clinical applications. Simulations are also performed to assess the corresponding dose reduction in applications of balloon breast applicators using high dose rate 169Yb sources that have recently become available. Results yield a far more significant and distance dependent dose reduction for 169Yb (on the order of 20% at the prescription distance for the abovementioned reference simulation geometry). This dose reduction cannot be accounted for using simple analytical methods as for 192Ir due to the significant hardening of the initially emitted 169Yb photons within the diluted radiographic contrast media. Combined with results of previous works regarding the effect of altered scatter conditions (relative to treatment planning system assumptions) on breast treatment planning accuracy, which is more pronounced for 169Yb relative to 192Ir, these findings call for the amendment of dose treatment planning systems before using 169Yb high dose rate sources in balloon breast applicators.


Assuntos
Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Fótons , Planejamento da Radioterapia Assistida por Computador , Itérbio/efeitos da radiação , Itérbio/uso terapêutico , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Água/química
17.
Br J Radiol ; 80(954): 446-51, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17151063

RESUMO

The prototype of a stereotactic collimator set developed in our department is evaluated for clinical use. This set consists of three cylindrical blocks mounted on a tray which slides in the wedge insert of a Siemens Primus accelerator. Each block has a collimating hole along its long axis to produce radiation fields of circular cross-section at the isocentre plane with diameters of 15 mm, 20 mm and 25 mm. Different geometric and dosimetric quality assurance tests were performed and results are found within the limits set for stereotactic radiotherapy. Dosimetry results measured using Kodak EDR-2 radiographic film and a pinpoint ion chamber also show good agreement with corresponding results calculated by Monte Carlo simulation of the linear accelerator head and the collimators. Measured dosimetry data were used to adapt a conventional PLATO treatment planning system for stereotactic radiotherapy using the prototype collimator set. Treatment planning system calculations and film measurements for treatment of an intracranial lesion in an anthropomorphic head phantom using coplanar 180 degrees arcs are compared and found to agree within 2 mm. This supports the accuracy of dose delivery using the prototype stereotactic collimators. Despite their increased penumbra (2.5-3.5 mm relative to 2-2.5 mm for commercially available collimators) the ease of construction makes the proposed stereotactic collimators an interesting alternative for accomplishing cost effective stereotactic treatments.


Assuntos
Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Simulação por Computador , Desenho de Equipamento , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Reprodutibilidade dos Testes
18.
Phys Med Biol ; 51(19): 5023-33, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16985285

RESUMO

Seeking to assess the radiation risk associated with radiological examinations in neonatal intensive care units, thermo-luminescence dosimetry was used for the measurement of entrance surface dose (ESD) in 44 AP chest and 28 AP combined chest-abdominal exposures of a sample of 60 neonates. The mean values of ESD were found to be equal to 44 +/- 16 microGy and 43 +/- 19 microGy, respectively. The MCNP-4C2 code with a mathematical phantom simulating a neonate and appropriate x-ray energy spectra were employed for the simulation of the AP chest and AP combined chest-abdominal exposures. Equivalent organ dose per unit ESD and energy imparted per unit ESD calculations are presented in tabular form. Combined with ESD measurements, these calculations yield an effective dose of 10.2 +/- 3.7 microSv, regardless of sex, and an imparted energy of 18.5 +/- 6.7 microJ for the chest radiograph. The corresponding results for the combined chest-abdominal examination are 14.7 +/- 7.6 microSv (males)/17.2 +/- 7.6 microSv (females) and 29.7 +/- 13.2 microJ. The calculated total risk per radiograph was low, ranging between 1.7 and 2.9 per million neonates, per film, and being slightly higher for females. Results of this study are in good agreement with previous studies, especially in view of the diversity met in the calculation methods.


Assuntos
Cavidade Abdominal/efeitos da radiação , Monitoramento de Radiação/métodos , Radiografia Abdominal/efeitos adversos , Radiografia Torácica/efeitos adversos , Radiometria/métodos , Tórax/efeitos da radiação , Feminino , Humanos , Recém-Nascido , Masculino , Modelos Teóricos , Método de Monte Carlo , Doses de Radiação , Risco , Medição de Risco , Processos Estocásticos
19.
Med Phys ; 33(7): 2541-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898458

RESUMO

169Yb has received a renewed focus lately as an alternative to 192Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169Yb and 192Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169Yb and 192Ir HDR sources. The barrier thickness required for 169Yb is lower than that for 192Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Proteção Radiológica/métodos , Proteção Radiológica/normas , Radioisótopos/uso terapêutico , Itérbio/uso terapêutico , Simulação por Computador , Humanos , Chumbo , Método de Monte Carlo , Monitoramento de Radiação , Dosagem Radioterapêutica , Espalhamento de Radiação , Software
20.
Med Phys ; 33(12): 4583-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17278810

RESUMO

Monte Carlo simulation dosimetry is used to compare 169Yb to 192Ir for breast high dose rate (HDR) brachytherapy applications using multiple catheter implants. Results for bare point sources show that while 169Yb delivers a greater dose rate per unit air kerma strength at the radial distance range of interest to brachytherapy in homogeneous water phantoms, it suffers a greater dose rate deficit in missing scatter conditions relative to 192Ir. As a result of these two opposing factors, in the scatter conditions defined by the presence of the lung and the finite patient dimensions in breast brachytherapy the dose distributions calculated in a patient equivalent mathematical phantom by Monte Carlo simulations for the same implant of either 169Yb or 1921r commercially available sources are found comparable. Dose volume histogram results support that 169Yb could be at least as effective as 192Ir delivering the same dose to the lung and slightly reduced dose to the breast skin. The current treatment planning systems' approach of employing dosimetry data precalculated in a homogeneous water phantom of given shape and dimensions, however, is shown to notably overestimate the delivered dose distribution for 169Yb. Especially at the skin and the lung, the treatment planning system dose overestimation is on the order of 15%-30%. These findings do not undermine the potential of 169Yb HDR sources for breast brachytherapy relative to the most commonly used 192Ir HDR sources. They imply, however, that there could be a need for the amendment of dose calculation algorithms employed in clinical treatment planning of particular brachytherapy applications, especially for intermediate photon energy sources such as 169Yb.


Assuntos
Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Radioisótopos de Irídio/uso terapêutico , Radioisótopos/uso terapêutico , Radiometria/métodos , Itérbio/uso terapêutico , Algoritmos , Mama/patologia , Cateterismo , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA