RESUMO
Our previous gene expression studies in a PCB-exposed cohort of young children in Slovakia revealed that early-life exposures to PCBs and other organochlorine compounds were associated with significant alterations across several pathogenetic pathways. The present study was undertaken to further explore the high-throughput qRT-PCR-based gene expression effects by using TaqMan low-density array (TLDA) for selected genes in a sample of 55 children from the cohort. We analyzed the transcriptional changes of 11 genes in relation to PCB and organochlorine pesticide exposure levels (including DDT, DDE, HCH, and HCB), and to BMI and ethnicity in this cohort. The results indicated an overall downregulation of expression of these genes. Maximum downregulation (in fold change) was observed in the ENTPD3 gene, and the minimum level of downregulation was in CYP2D6. As per our multinomial regression model study, downregulation of LEPR gene was significantly directly correlated with all the exposure variables. Downregulation of APC, ARNT, CYP2D6, LEPR, LRP12, and MYC genes was directly correlated with BMI (kg/m2) of the individuals. Gender-specific differences in gene expression were observed in CYP2D6 (p-value 0.0001) and LEPR (p-value 0.028), while downregulation of CYP2D6 (p-value 0.01), LEPR (p-value 0.02), LRP12 (p-value 0.04), and MYC (p-value 0.02) genes was consistently observed in Roma children compared to Caucasians. The investigation of such health disparities must be emphasized in future research, together with interventions to reduce the health consequences of PCB exposures. In this context, we emphasize the importance of biomarker-based approaches to future research on genetic susceptibility to the effects of these compounds.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Bifenilos Policlorados , Criança , Pré-Escolar , Citocromo P-450 CYP2D6/metabolismo , Exposição Ambiental/análise , Humanos , Bifenilos Policlorados/metabolismo , Eslováquia , TranscriptomaRESUMO
The risk of cancer due to PCB exposure in humans is highly debated. In eastern Slovakia, high exposure of the population to organochlorines (especially PCBs) was associated with various disease and disorder pathways, viz., endocrine disruption, metabolic disorder & diabetes, and cancer, thereby disturbing several cellular processes, including protein synthesis, stress response, and apoptosis. We have evaluated a Slovak cohort (45-month children, at lower and higher levels of PCB exposure from the environment) for disease and disorder development to develop early disease cancer biomarkers that could shed new light on possible mechanisms for the genesis of cancers under such chemical exposures, and identify potential avenues for prevention.Microarray studies of global gene expression were conducted from the 45-month-old children on the Affymetrix platform followed by Ingenuity Pathway Analysis (IPA®) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR TaqMan low-density array (TLDA) was performed to further validate the selected genes on the whole blood cells of the most highly exposed children from the study cohort (n = 71). TP53, MYC, BCL2, and LRP12 differential gene expressions suggested strong relationships between potential future tumor promotion and PCB exposure in Slovak children. The IPA analysis further detected the most important signaling pathways, including molecular mechanism of cancers, prostate cancer signaling, ovarian cancer signaling, P53 signaling, oncostatin M signaling, and their respective functions (viz., prostate cancer, breast cancer, progression of tumor, growth of tumor, and non-Hodgkin's disease). The results suggest that PCB exposures, even at the early age of these children, may have lifelong consequences for the future development of chronic diseases.