Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Plant J ; 112(4): 1014-1028, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198049

RESUMO

Ammonium (NH4 + )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4 + provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.


Assuntos
Compostos de Amônio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Compostos de Amônio/metabolismo , Vacúolos/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo
2.
Plant Physiol ; 154(1): 357-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631317

RESUMO

Growth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit. The results show that under drought, rosette relative expansion rate is decreased more than photosynthesis, leading to a more positive C balance, while root growth is promoted. Several soluble metabolites accumulate in response to soil water deficit, with K(+) and organic acids as the main contributors to osmotic adjustment. Osmotic adjustment costs only a small percentage of the daily photosynthetic C fixation. All C metabolites measured (not only starch and sugars but also organic acids and amino acids) show a diurnal turnover that often increased under water deficit, suggesting that these metabolites are readily available for being metabolized in situ or exported to roots. On the basis of 30 enzyme activities, no in-depth reprogramming of C metabolism was observed. Water deficit induces a shift of the expression level of a set of sugar-responsive genes that is indicative of increased, rather than decreased, C availability. These results converge to show that the differential impact of soil water deficit on photosynthesis and rosette expansion results in an increased availability of C for the roots, an increased turnover of C metabolites, and a low-cost C-based osmotic adjustment, and these responses are performed without major reformatting of the primary metabolism machinery.


Assuntos
Aclimatação/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Água/farmacologia , Aclimatação/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Ácidos Carboxílicos/metabolismo , Análise Multivariada , Osmose/efeitos dos fármacos , Fotoperíodo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , Solubilidade/efeitos dos fármacos , Amido/metabolismo
3.
Anal Biochem ; 373(1): 9-17, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17980141

RESUMO

Despite a wealth of sequence information on genes encoding carbohydrate-active enzymes (e.g., transferases, esterases, hydrolases), very few of these enzymes have been described in detail, particularly regarding substrate specificities. A facile and rapid method for the characterization of substrate specificities of polysaccharide-active enzymes that uses matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) has been developed. This method has been applied to characterize a xyloglucan fucosyltransferase and a pectin methyl-esterase. Reactions were performed in liquid phase, and aliquots of the reaction mixtures were spotted on a polyvinylidene fluoride (PVDF) membrane. Reaction products were precipitated onto the membrane and cleaned by treatment with an ethanol-water mixture. Subsequently, the reaction products were hydrolyzed by specific endoglycanases, and the resulting oligosaccharides were directly analyzed onto the PVDF membrane by MALDI-TOF MS. The new method is amenable to high-throughput analysis and, thus, constitutes an emerging avenue to rapidly fill the gap in our knowledge of the specificities of polysaccharide-active enzymes.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Fucosiltransferases/metabolismo , Plantas/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA